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Abstract. Let G be a locally compact group, π : G → U(H) be a

strongly continuous unitary representation, and CBσ(B(H)) the space

of normal completely bounded maps on B(H). We study the range of

the map

Γπ : M(G) → CBσ(B(H)), Γπ(µ) =

Z
G

π(s)⊗ π(s)∗dµ(s)

where we identify CBσ(B(H)) with the extended Haagerup tensor prod-

uct B(H)⊗eh B(H). We use the fact that the C*-algebra generated by

integrating π to L1(G) is unital exactly when π is norm continuous, to

show that Γπ(L1(G)) ⊂ B(H) ⊗h B(H) exactly when π is norm contin-

uous. For the case that G is abelian, we study Γπ(M(G)) as a subset of

the Varopoulos algebra. We also characterise positive definite elements

of the Varopoulos algebra in terms of completely positive operators.
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1. Introduction

In [24], Størmer conducted an interesting study of spaces of completely

bounded maps on B(H). For subalgebras A and B of B(H) he defined what

is now known as the Haagerup tensor product A⊗hB, as a completion of the

set of elementary operators of the form x 7→
∑n

i=1 aixbi where each ai ∈ A

and each bi ∈ B. This approach gives the same tensor product norm as that

in the more standard approach (see [8], for example), as shown in [21].

If G is an abelian group and π : G → U(H) is a strongly continuous

unitary representation, the homomorphism Γπ from the measure algebra

M(G) to the space CBσ(B(H)) of normal completely bounded maps on B(H),

defined by

(1.1) Γπ(µ) =
∫

G
π(s)⊗ π(s)∗dµ(s)

was studied by Størmer. (We identify CBσ(B(H)) with the extended Haa-

gerup tensor product B(H) ⊗eh B(H) from [4] and [9].) He used this ho-

momorphism to generate many examples of regular and non-regular Banach

subalgebras of CBσ(B(H)). It was shown in [24, Lem. 5.6] that if π is norm

continuous (i.e. continuous when the norm topology is placed on U(H)) then

for any f in L1(G)

(1.2) Γπ(f) =
∫

G
f(s)π(s)⊗ π(s)∗ds ∈ C∗π ⊗h C∗π

where C∗π is the C*-algebra generated by
{∫

G f(s)π(s)ds : f ∈ L1(G)
}
.

We note that for an arbitrary locally compact group G, the map Γλ as in

(1.1), where λ is the left regular representation, was studied in [11] and [16].

In this paper we will make use of the theory of completely bounded normal

maps on B(H) from [21] to study the range of Γπ. We show that, for a general

locally compact group G,

Γπ(L1(G)) ⊂ C∗π ⊗eh C∗π
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where ⊗eh denotes the extended Haagerup tensor product from [9], [7] and

[4]. Moreover, using the fact that C∗π is unital exactly when the representa-

tion π : G → U(H) is norm continuous, we show that the validity of (1.2)

for every f in L1(G) gives a characterisation of the norm continuity of π.

In the case that G is abelian, we develop the “Fourier-Stieltjes trans-

form” for Γπ(M(G)). The range of this transform is a Varopoulos type

algebra Vb(Eπ), which will be defined below. We use some general results

on completely positive maps to characterise complete positivity of elements

of Vb(Eπ), as operators on B(H), extending some results from [24]. In

particular, we characterise those µ in M(G) for which Γπ(µ) is completely

positive.



4 ROGER R. SMITH AND NICO SPRONK

2. Spaces of Normal Completely Bounded Maps

Let H be a Hilbert space, let B(H) be the space of bounded operators

on H and let V and W be closed subspaces of B(H). The Haagerup tensor

product V ⊗h W is defined in [13] and [6]. The extended Haagerup tensor

product V⊗ehW is developed in [9] and [7]; and also in [4], but in the context

of dual spaces where it is called the “weak* Haagerup tensor product” and

denoted V ⊗w∗h W. It is shown in [22] that the approach of [4] can be

modified to develop the extended Haagerup tensor product in general.

Following [22], we thus define V⊗ehW to be the space of all (formal) series∑
i∈I vi⊗wi where each vi ∈ V, each wi ∈ W, and each of the series

∑
i∈I viv

∗
i

and
∑

i∈I w∗i wi converges weak* in B(H). The index set I is established to

have cardinality |I| = dimH. Two series
∑

i∈I vi ⊗ wi and
∑

i∈I v′i ⊗ w′i

define the same element of V ⊗eh W provided
∑

i∈I vixwi =
∑

i∈I v′ixw′i for

each x in B(H). Then V ⊗eh W is a Banach space when endowed with the

norm

‖T‖eh = inf


∥∥∥∥∥∑

i∈I

viv
∗
i

∥∥∥∥∥
1/2 ∥∥∥∥∥∑

i∈I

w∗i wi

∥∥∥∥∥
1/2

: T =
∑
i∈I

vi ⊗ wi


and the infimum is attained. As in [4], note that the Haagerup tensor

product V ⊗h W may be realized as the set of those T in V ⊗eh W which

admit a representation T =
∑

i∈I vi ⊗ wi where
∑

i∈I viv
∗
i and

∑
i∈I w∗i wi

converge in norm. It is easy to see that any element T of V ⊗hW may thus

be written with a countable index set as T =
∑∞

i=1 vi ⊗ wi.

The space V ⊗eh W has two natural, though more extrinsic descriptions.

First, if V and W are each weak* closed subspaces of B(H), they have

respective preduals V∗ and W∗. For example,

V∗ = B(H)∗/{ω ∈ B(H)∗ : ω(v) = 0 for all v in V}

which is an operator space when endowed with the quotient structure from

the predual operator space structure on B(H)∗. Then V ⊗eh W is the dual
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space of V∗ ⊗h W∗ via the pairing

(2.1)

〈∑
i∈I

vi ⊗ wi, ω ⊗ ν

〉
=
∑
i∈I

ω(vi)ν(wi).

A proof of this can be found in [4] or [9]. In particular, B(H) ⊗eh B(H) ∼=(
B(H)∗ ⊗h B(H)∗

)∗.
Let CBσ(B(H)) denote the space of normal completely bounded operators

on B(H). The map θ : B(H)⊗eh B(H) → CBσ(B(H)) given by

θ

(∑
i∈I

vi ⊗ wi

)
x =

∑
i∈I

vixwi, for x in B(H)

is a surjective isometry by [13] or [21]. Moreover, θ is still an isometry

when restricted to the spaces V ⊗eh W or V ⊗h W. For notational ease

we will simply identify V ⊗eh W and V ⊗h W as subspaces of CBσ(B(H))

in the sequel, and omit the map θ. In particular, we view B(H) ⊗h B(H)

as being the completion in the completely bounded operator norm of the

space of elementary operators x 7→
∑n

i=1 vixwi on B(H). The composition

of operators in CBσ(B(H)) induces a product in B(H)⊗eh B(H), making it

a Banach algebra. This product is given on elementary tensors by

(a⊗ b)◦(c⊗ d) = ac⊗ db.

The following is an extension of a theorem from [2], whose proof is much

like the one offered there.

Proposition 2.1. If A and B are norm closed subalgebras of B(H), then

A⊗eh B is a subalgebra of B(H)⊗eh B(H). If V is a (left) A-module and W

is a (right) B-module in B(H), then V ⊗eh W is a (left) A⊗eh B-module in

B(H)⊗eh B(H).

If Ω ∈ B(H)∗ then the left and right slice maps LΩ, RΩ : B(H)⊗ehB(H) →

B(H) are given for T =
∑

i∈I vi ⊗ wi by

(2.2) LΩT =
∑
i∈I

Ω(vi)wi and RΩT =
∑
i∈I

Ω(wi)vi.
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These series each converge in norm as is shown in [22, Thm. 2.2]. Moreover,

it is shown there that for any pair of closed subspaces V and W of B(H),

V ⊗eh W consists exactly of those T in B(H)⊗eh B(H) for which LΩT ∈ W

and RΩT ∈ V for each Ω in B(H)∗ (or for which LωT ∈ W and RωT ∈ V

for each ω in B(H)∗). These results extend [21, Thm. 4.5].

We will finish this section with a theorem on completely positive maps

which will be useful in Section 4. We will first need some general preliminary

results which are modeled on results from [21].

A closed subalgebra B of B(H) is called locally cyclic if for each finite

dimensional subspace L of H, there is a vector ξ in H such that Bξ ⊃ L.

We note, for example, that if B is a maximal abelian self-adjoint subalgebra

of B(H) then it is locally cyclic. Indeed if ξ1, . . . , ξn span L, consider the

orthogonal projections p1, p2, . . . , pn whose respective ranges are

Bξ1, Bξ2 	 Bξ1, . . . , Bξn 	
n−1⊕
i=1

Bξi.

Then each pi ∈ B′ = B, and ξ = ξ1 + p2ξ2 + · · ·+ pnξn satisfies Bξ ⊃ L.

The following is an adaptation of [21, Thm. 2.1].

Lemma 2.2. If B is a locally cyclic C*-subalgebra of B(H) and T : B(H) →

B(H) is a positive map which is also a B-bimodule map, then T is completely

positive.

Proof. Let us fix n, a positive matrix [xij ] in Mn(B(H)) and a column vector

ξξξ = [ξ1 · · · ξn]t in Hn with ‖ξξξ‖ < 1. Then, given ε > 0, there is vector ξ in H

and elements b1, . . . , bn in B such that the vector ηηη = [b1ξ · · · bnξ]t satisfies

‖ξξξ − ηηη‖ < ε and ‖ηηη‖ < 1. Leting T (n) : Mn(B(H)) → Mn(B(H)) be the
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amplification of T , we have

〈
T (n)[xij ]ηηη|ηηη

〉
=

〈
[Txij ]


b1ξ
...

bnξ

 |


b1ξ
...

bnξ


〉

=
n∑

i,j=1

〈b∗i T (xij)bjξ|ξ〉 =

〈
T

 n∑
i,j=1

b∗i xijbj

 ξ|ξ

〉
≥ 0

and ∣∣∣〈T (n)[xij ]ηηη|ηηη
〉
−
〈
T (n)[xij ]ξξξ|ξξξ

〉∣∣∣ < (∥∥∥T (n)
∥∥∥+ 1

)
ε.

Since ε can be chosen arbitrarily small, we conclude that
〈
T (n)[xij ]ξξξ|ξξξ

〉
≥ 0.

Hence T is completely positive. �

If a family of operators {bi}i∈I from B(H) defines a bounded row matrix

B = [· · · bi · · · ], i.e.
∑

i∈I bib
∗
i converges weak* in B(H), then the product

B·λλλ =
∑

I∈I λibi converges in norm and thus defines an element of B(H)

for each λλλ = [· · ·λi · · · ]t in `2(I). We say that the set {bi}i∈I is strongly

independent if B·λλλ = 0 only when λλλ = 0. This is an obvious extension of the

usual notion of linear independence, and can be easily adapted to column

matrices. Elements of B(H)⊗ehB(H) admit many different representations,

and strong independence was introduced in [21] to handle the difficulties

caused by this.

The following is an adaptation of [21, Thm. 3.1].

Lemma 2.3. If A is a C*-subalgebra of B(H) and T ∈ A ⊗eh A, then T

is completely positive if and only if there is a strongly independent family

{ai}i∈I from A for which
∑

i∈I aia
∗
i converges weak* in B(H) and T =∑

i∈I ai ⊗ a∗i .

Proof. We need only to prove that the first condition implies the second.

If T is completely positive and normal on B(H), then its restriction to

the algebra of compact operators T |K(H) is a completely positve map which

determines T . Using Stinespring’s theorem and the representation theory
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for K(H), just as in [21, Thm. 3.1] or [13], we obtain a family {bj}j∈J from

B(H) for which
∑

j∈J bjb
∗
j converges weak* in B(H) and T =

∑
j∈J bj ⊗ b∗j .

We see that J can be any index set whose cardinality coincides with the

Hilbertian dimension of H. Let B = [· · · bj · · · ].

Now we let

L = {λλλ ∈ `2(J) : B·λλλ = 0}

and partition J = I ′ ∪ I in such a way that there is an orthonormal basis

{λλλj}j∈J of `2(J) for which

span{λλλi}i∈I′ = L and span{λλλi}i∈I = L⊥.

Let U denote the J×J unitary matrix whose columns are the vectors {λλλj}j∈J .

Let A = [· · · aj · · · ] = B·U . Note that aj = 0 for each j in I ′. Then for any

x in B(H), letting xJ denote the J×J diagonal matrix which is the ampli-

fication of x, we have

Tx =
∑
j∈J

bjxb∗j = BxJB∗ = B·UxJU∗·B∗ = AxJA∗ =
∑
i∈I

aixa∗i .

We have that {ai}i∈I is strongly independent, for if ααα = [· · ·αi · · · ]t in `2(I)

is such that A·ααα = 0, then

0 = A·ααα =
∑
i∈I

αiai =
∑
i∈I

αiB·λλλi = B·

(∑
i∈I

αiλλλi

)

so
∑

i∈I αiλλλi ∈ L ∩ L⊥, whence ααα = 0. Hence

T =
∑
i∈I

ai ⊗ a∗i

where {ai}i∈I is strongly independent. It remains to show that {ai}i∈I ⊂ A.

Since {ai}i∈I is strongly independent, so too is {a∗i }i∈I . Hence by [1, Lem.

2.2], the space {
[· · ·Ω(a∗i ) · · · ]

t : Ω ∈ B(H)∗
}
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is dense in `2(I). Thus, given a fixed index i0 in I, there is a (not necessarily

bounded) sequence {Ωn}∞n=1 from B(H)∗ such that

ai0 = lim
n→∞

∑
i∈I

Ωn(a∗i )ai = lim
n→∞

RΩnT.

Since RΩT ∈ A for each right slice map RΩ, it follows that ai0 ∈ A. �

If E is any locally compact space we let

V0(E) = C0(E)⊗h C0(E)

V0(E) = C0(E)⊗eh C0(E)(2.3)

and Vb(E) = Cb(E)⊗eh Cb(E).

These spaces are discussed in [22]. These all may be regarded as Banach

algebras of functions on E×E by Proposition 2.1. However, as pointed out

in [20], an element u of Vb(E) may not be continuous on E×E, even if E

is compact. Hovever, if C is a closed subalgebra of Cb(E) (say C = C0(E)),

then for each u ∈ C ⊗eh C ⊂ Vb(E), the pointwise slices, u(·, x) and u(x, ·)

for any fixed x in E, will always be elements of C. In the case where E

is a compact group, V0(E) is discussed in [23], and in a profound way in

[25]. We note that by Grothendieck’s Inequality, V0(E) = C0(E) ⊗γ C0(E)

(projective tensor product), up to equivalent norms.

If u : E×E → C, we say that u is positive definite if for any finite collection

of elements x1, . . . , xn from E, the matrix [u(xi, xj)] is of positive type.

If A is any abelian C*-algebra for which there is a locally compact space E

and an injective ∗-homomorphism F : A → Cb(E), then there is an isometric

algebra homomorphism F ⊗ F : A⊗eh A → Vb(E), by [9] or [22, Cor. 2.3].

The following theorem generalises [24, Thm. 5.1].

Theorem 2.4. Let A be an abelian C*-subalgebra of B(H) for which there is

a locally compact space E and an injective ∗-homomorphism F : A → Cb(E).

If T ∈ A ⊗eh A and u = (F ⊗ F )T , so u ∈ F (A) ⊗eh F (A) ⊂ Vb(E), then

the following are equivalent:
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(i) T is positive.

(ii) T is completely positive.

(iii) u is positive definite.

Proof. (i)⇒(ii) If B is any maximal abelian subalgebra of B(H) which

contains A, then T is a B-bimodule map. The result then follows from

Lemma 2.2.

(ii)⇒(iii) By Lemma 2.3 we have that T =
∑

i∈I ai⊗ a∗i for some family

of elements from A for which
∑

i∈I aia
∗
i converges weak* in B(H). Let

ϕi = F (ai) in Cb(E), so

u =
∑
i∈I

ϕi ⊗ ϕ̄i and

∥∥∥∥∥∑
i∈I

|ϕi|2
∥∥∥∥∥
∞

< ∞.

Let ξ : E → `2(I) be given by ξ(x) =
(
ϕi(x)

)
i∈I

. Then for each (x, y) in E×

E, we have that

(2.4) u(x, y) = 〈ξ(x)|ξ(y)〉

and hence u is positive definite.

(iii)⇒(i) Since u is positive definite function, then by [12, §3.1], there is

a Hilbert space L and a bounded function ξ : E → L such that (2.4) holds.

Let p be the orthogonal projection on L whose range is span{ξ(x)}x∈E , and

let {ξi}i∈I be an orthonormal basis for pL. Then for each i the function

ϕi = 〈ξ(·)|ξi〉

is in F (A). Indeed, given ε > 0 we can find α1, . . . , αn from C and y1, . . . , yn

from E, such that ∥∥∥∥∥ξi −
n∑

k=1

αkξ(yk)

∥∥∥∥∥ < ε

whence∥∥∥∥∥ϕi −
n∑

k=1

ᾱku(·, yk)

∥∥∥∥∥
∞

=

∥∥∥∥∥〈ξ(·)|ξi〉 −
n∑

k=1

ᾱk 〈ξ(·)|ξ(yk)〉

∥∥∥∥∥
∞

< ‖ξ‖∞ ε.
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Hence ϕi can be uniformly approximated arbitrarily closely by elements of

F (A), and our conclusion holds. It then follows by Parseval’s Identity that

for any (x, y) in E×E

u(x, y) = 〈pξ(x)|pξ(y)〉 =
∑
i∈I

〈ξ(x)|ξi〉 〈ξi|ξ(y)〉 =
∑
i∈I

ϕi(x)ϕi(y).

Hence we may write

u =
∑
i∈I

ϕi ⊗ ϕ̄i with

∥∥∥∥∥∑
i∈I

|ϕi|2
∥∥∥∥∥
∞

= ‖ξ‖2
∞ < ∞.

Letting ai = F−1(ϕi) in A, we get that T = (F ⊗F )−1u =
∑

i∈I ai⊗a∗i and

is thus positive. �
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3. Representations of Groups in Completely Bounded Maps

Let G be a locally compact group, let A be a unital Banach algebra which

is also a dual space with predual A∗, and let α : G → Ainv be a weak* con-

tinuous bounded homomorphism where Ainv denotes the group of invertible

elements in A. In particular we assume α(e) is the unit of A Denote the

space of bounded complex Borel measures on G by M(G). Recall that M(G)

is the dual space to the space C0(G) of continuous functions vanishing at in-

finity. Recall too that M(G) is a Banach algebra via convolution: for each

µ, ν in M(G) we define µ∗ν by

(3.1)
∫

G
ϕdµ∗ν =

∫
G

∫
G

ϕ(st)dµ(s)dν(t)

for each ϕ in C0(G). We note that since each of µ and ν can be approximated

in norm by compactly supported bounded measures, (3.1) holds for any

choice of ϕ in Cb(G) too. If µ ∈ M(G), let

α1(µ) = weak*-
∫

G
α(s)dµ(s)

i.e. if ω ∈ A∗, then 〈α1(µ), ω〉 =
∫
G 〈α(s), ω〉 dµ(s). Then α1 : M(G) → A is

a bounded linear map for if ‖α‖∞ = sups∈G ‖α(s)‖, then

(3.2)

‖α1(µ)‖ = sup
ω∈b1(A∗)

∣∣∣∣∫
G
〈α(s), ω〉 dµ(s)

∣∣∣∣ ≤ ∫
G
‖α‖∞ d|µ|(s) = ‖α‖∞ ‖µ‖1 .

Recall that the dual A∗ is a contractive A-bimodule where for b in A and

F in A∗ we define b·F and F ·b in A∗ by 〈a, b·F 〉 = 〈ab, F 〉 and 〈a, F ·b〉 =

〈ba, F 〉, for each a in A. We say that a subspace Ω of A∗ is a right α(G)-

submodule if ω·α(s) ∈ Ω, for each ω in Ω and s in G.

Proposition 3.1. Let G, A and α be as above. Moreover, suppose that

A∗ is both a left A-submodule of A∗ and a right α(G)-submodule. Then

α1 : M(G) → A is a unital algebra homomorphism.
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Proof. If µ, ν ∈ M(G) and ω ∈ A∗ then

〈α1(µ)α1(ν), ω〉 = 〈α1(µ), α1(ν)·ω〉

=
∫

G
〈α(s), α1(ν)·ω〉 dµ(s)

=
∫

G
〈α1(ν), ω·α(s)〉 dµ(s)

=
∫

G

∫
G
〈α(t), ω·α(s)〉 dν(t)dµ(s)

=
∫

G

∫
G
〈α(st), ω〉 dν(t)dµ(s).

where the hypotheses guarantee that α1(ν)·ω ∈ A∗ and that ω·α(s) ∈ A∗,

for each s. By Fubini’s Theorem we have that∫
G

∫
G
〈α(st), ω〉 dν(t)dµ(s) =

∫
G

∫
G
〈α(st), ω〉 dµ(s)dν(t) = 〈α1(µ∗ν), ω〉

where we note that (s, t) 7→ 〈α(st), ω〉 is continuous and bounded, hence

µ×ν-integrable.

That α1(δe) = α(e) follows from that A∗ is a separating for A. Hence α1

is a unital map. �

By a symmetric argument, the above proposition also holds if A∗ is as-

sumed to be both a right A-submodule of A∗ and a left α(G)-submodule.

Example 3.2. (i) Let X be a Banach space admitting a predual X∗. Then

we have that A = B(X ) is a dual unital Banach algebra admitting a predual

A∗ = X ⊗γ X∗, via the dual pairing

〈T, x⊗ ω〉 = 〈Tx, ω〉 for T in A, x in X and ω in X∗.

Here ⊗γ denotes the projective tensor product. We have then that A∗ is a

left A submodule of A∗. Indeed, for any S, T in A and elementary tensor

x⊗ ω in A∗ we have that,

〈ST, x⊗ ω〉 = 〈STx, ω〉 = 〈S, (Tx)⊗ ω〉

so T ·(x⊗ ω) = (Tx)⊗ ω.
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If Bσ(X ) denotes the weak*-weak* continuous bounded linear maps on X

then A∗ is a right Bσ(X )-submodule of A∗. Thus we obtain the situation

of Proposition 3.1 whenever α : G → Ainv is a weak* continuous bounded

homomorphism whose range is in Bσ(X ). In particular, this happens when

X is reflexive and α is a non-degenerate strong operator continuous repre-

sentation on X .

(ii) The example above can be easily modified for the case where V is a

dual operator space and A = CB(V).

(iii) There is a standard identification CBσ(B(H)) ∼= CB(K(H),B(H)),

and thus an identification of B(H)⊗eh B(H) ∼= CB(K(H),B(H)). In fact, as

shown in [4], this latter identification is a weak* homeomorphism. Indeed,

using standard identifications with row and column Hilbert spaces and the

operator projective tensor product, ⊗̂ (see [3] or [8, II.9.3]), we have

B(H)∗ ⊗h B(H)∗ ∼=
(
Hr ⊗h Hc

)
⊗h
(
Hr ⊗h Hc

)
∼= Hr ⊗h

(
Hc ⊗h Hr

)
⊗h Hc

∼= Hr⊗̂K(H)⊗̂Hc

∼= K(H)⊗̂Hr⊗̂Hc
∼= K(H)⊗̂B(H)∗.

On elementary tensors this identification is given by

(ξ∗ ⊗ η)⊗ (ζ∗ ⊗ ϑ) 7→ (η ⊗ ζ∗)⊗ (ξ∗ ⊗ ϑ)

where for vectors ξ, η in H we let ξ⊗η∗ denote the usual rank 1 operator and

ξ∗⊗η the usual vector functional. Now if T =
∑

i∈I ai⊗bi in B(H)⊗ehB(H)

then, in the dual pairing (2.1), we have that

〈T, (ξ∗ ⊗ η)⊗ (ζ∗ ⊗ ϑ)〉 =
∑
i∈I

〈aiη|ξ〉 〈biϑ|ζ〉 .

Meanwhile, in the CB(K(H),B(H))–K(H)⊗̂B(H)∗ duality we have that

〈T, (η ⊗ ζ∗)⊗ (ξ∗ ⊗ ϑ)〉 =

〈∑
i∈I

aiη ⊗ (b∗i ζ)∗, ξ∗ ⊗ ϑ

〉

=
∑
i∈I

〈aiη|ξ〉 〈biϑ|ζ〉 .
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Now for every elementary tensor k⊗ω in K(H)⊗̂B(H)∗ and T in B(H)⊗eh

B(H), we have that (k⊗ω)·T = k⊗(ω·T ) ∈ K(H)⊗̂B(H)∗. Hence B(H)∗⊗h

B(H)∗ ∼= K(H)⊗̂B(H)∗ is a right module for B(H)⊗eh B(H). We note that

B(H)∗ ⊗h B(H)∗ is a left B(H)⊗h B(H)-module. �

We will identify the group algebra L1(G) with the closed ideal in M(G)

of measures which are absolutely continuous with respect to the left Haar

measure m (whose integral we will denote
∫
G · · · ds). We will identify the

discrete group algebra `1(G) with the closed subspace of M(G) generated by

all of the Dirac measures {δs : s ∈ G}. We let

Mα = α1(M(G)), Cα = α1(L1(G)) and Dα = α1(`1(G))

where each of the closures is in the norm topology of A.

The following proposition is surely well-known, though we have been un-

able to find it in the literature.

Proposition 3.3. Given G, A and α satifying the hypotheses of Proposition

3.1, α is norm continuous if and only if Cα is unital.

Proof. Let (eU ) be the bounded approximate identity for L1(G) given by

eU = 1
m(U)1U (normalised indicator function), indexed over the family of all

relatively compact neighbourhoods of the identity e in G, partially ordered

by reverse inclusion.

“ ⇒ ” Let ε > 0. Let V be any relatively compact neighbourhood of e for

which ‖α(s)− α(e)‖ < ε for each s in V . Then for any relatively compact

neighbourhood U of e which is contained in V we have

‖α1(eU )− α(e)‖ =
∥∥∥∥ 1
m(U)

∫
U

α(s)ds− α(e)
∥∥∥∥

≤ 1
m(U)

∫
U
‖α(s)− α(e)‖ ds < ε

where the second from last inequality is proved just as in (3.2). Thus α(e) =

limU α1(eU ) in norm, so α(e) ∈ Cα. Now α(e) is the unit for A, and hence

the unit for Cα.
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“ ⇐ ” It is a standard fact that limU α1(eU ) = α(e) in the weak* topology

of A. Indeed, limU

∫
G eU (s)ϕ(s)ds = ϕ(e) for any continuous function ϕ;

set ϕ = 〈α(·), ω〉 for any ω in A∗. Now let E be the unit for Cα. We

will establish that E = α(e), the unit of A. First, the map s 7→ α(s)E is

norm continuous. Indeed E ∈ Cα and can thus be norm approximated by

{α1(f) : f ∈ L1(G)}. Moreover, if f ∈ L1(G) then we have that

‖α(s)α1(f)− α1(f)‖ = ‖α1(δs∗f − f)‖ ≤ ‖α‖∞ ‖δs∗f − f‖1
s→e−→ 0

where the inequality follows from (3.2) and limit follows from [15, 20.4].

Next, for any compact neighbourhood U of e we have that

α1(eU ) = α1(eU )E =
1

m(U)

∫
U

α(s)ds·E =
1

m(U)

∫
U

α(s)Eds

where we note that right multiplication is weak*-continuous in A, by hy-

pothesis. Now, let ε > 0 be given, and find a neighbourhood V of e in G

such that ‖α(s)E − E‖ < ε for each s in V . Then for any relatively compact

neighbourhood U of E, contained in V , we have that

‖α1(eU )− E‖ =
∥∥∥∥ 1
m(U)

∫
U

α(s)Eds− E

∥∥∥∥ ≤ 1
m(U)

∫
U
‖α(s)E − E‖ ds < ε

where the second from last inequality is proved just as in (3.2). Hence we

have that limU α1(eU ) = E in norm, so, a fortiori, weak∗-limU α1(eU ) = E.

It then follows from above that E = α(e), so α(e) ∈ Cα. Thus

‖α(s)− α(e)‖ = ‖α(s)E − E‖ s→e−→ 0.

Hence α is norm continuous at e, and thus norm continuous on all of G. �

Corollary 3.4. For G, A and α as above, the following are equivalent:

(i) α is norm continuous (ii) Cα = Mα (iii) Cα = Dα.

Proof. (i)⇔(ii) If α is norm continuous, then Cα contains the unit α(e) by

Proposition 3.3. Hence, Cα is an ideal in Mα, containing the unit. Con-

versely, if Cα = Mα then Cα is unital, and norm continuity of α follows from

Proposition 3.3.
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(i)⇒(iii) Since (ii) holds, the inclusion Cα ⊃ Dα is clear. To obtain the

opposite inclusion, note that for any continuous function of compact support

ϕ – the family of which is dense in L1(G) – the function s 7→ ϕ(s)α(s), from

G to Dα, can be uniformly approximated by Borel simple functions. Hence

α1(ϕ) =
∫
G ϕ(s)α(s)ds may be regarded as a Bochner integral, and is thus

in Dα, since each α(s) ∈ Dα. It then follows that α1(L1(G)) ⊂ Dα and hence

Cα ⊂ Dα.

(iii)⇒(i) Since Cα ⊃ Dα, Cα is unital, and the result follows from Propo-

sition 3.3. �

Now suppose that π : G → U(H) ⊂ B(H)inv is a strongly continuous

unitary representation (which is equivalent to it being weak* continuous).

We will define π1 : M(G) → B(H) as above, but will use the notation

M∗
π = π1(M(G)), C∗π = π1(L1(G)) and D∗

π = π1(`1(G))

to indicate that these are C*-algebras. Using von Neumann’s double commu-

tant theorem, we have that C∗π and D∗
π each generate the same von Neumann

algebra, VNπ. We note that M∗
π ⊂ VNπ but M∗

π 6= VNπ in general. Thus,

in particular, there is no reason to suspect that M∗
π is a dual space.

Proposition 3.5. If µ ∈ M(G), then

(3.3) Γπ(µ) =
∫

G
π(s)⊗ π(s)∗dµ(s)

defines an element of B(H) ⊗w∗h B(H), and the integral converges in the

weak* topology, i.e. for each x in B(H)∗ ⊗h B(H)∗,

〈Γπ(µ), x〉 =
∫

G
〈π(s)⊗ π(s)∗, x〉 dµ(s).

Moreover,

(i) Γπ : M(G) → B(H)⊗w∗h B(H) is a contractive homomorphism whose

range is contained in the algebra M∗
π ⊗eh M∗

π.

(ii) Γπ(L1(G)) ⊂ C∗π ⊗eh C∗π.

(iii) Γπ(`1(G)) ⊂ D∗
π ⊗h D∗

π.
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(iv) If π is norm continuous, then Γπ(M(G)) ⊂ D∗
π ⊗h D∗

π.

Proof. (i) First, let us see that, for each µ in M(G), the integral in (3.3)

converges as claimed. This amounts to verifying that s 7→ π(s)⊗ π(s)∗ is a

weak* continuous representation from G into (B(H)⊗w∗hB(H))inv, i.e. that

s 7→ 〈π(s)⊗ π(s)∗, x〉 is continuous for each x in B(H)∗ ⊗h B(H)∗, by (2.1).

If x ∈ B(H)∗ ⊗h B(H)∗ and ε > 0, then there is xε in B(H)∗ ⊗ B(H)∗ such

that ‖x− xε‖h < ε. The function xε,π, given by s 7→ 〈π(s)⊗ π(s)∗, xε〉, is

clearly continuous on G, and ‖xπ − xε,π‖∞ ≤ ‖x− xε‖h < ε. Thus, taking

choices of ε tending to 0, we see that xπ is a continuous function on G.

Since ‖π(s)⊗ π(s)∗‖w∗h = 1 for each s in G, the contractivity of Γπ fol-

lows from (3.2). That Γπ is a homomorphism follows from Proposition 3.1

and Example 3.2 (iii).

To see that Γπ(µ) ∈ M∗
π⊗eh M∗

π, for any given µ in M(G), we will inspect

the image of a typical weak*-weak* continuous left slice map on Γπ(µ) and

use [22, Thm. 2.2]. If ω ∈ B(H)∗, then

(3.4) Lω (Γπ(µ)) =
∫

G
〈π(s), ω〉π(s)∗dµ(s) =

∫
G

π(s)d(ωπµ)∨(s) ∈ M∗
π

where ωπµ is the measure with Radon derivative d(ωπµ)/dµ = ωπ (here

ωπ(s) = 〈π(s), ω〉), and ν∨(E) = ν(E−1) = ν∗(E) for any Borel measure ν.

The computation for any right slice map is similar.

(ii) This follows from a computation similar to (3.4).

(iii) If µ =
∑

s∈G α(s)δs, where
∑

s∈G |α(s)| < ∞, then since π(s) ⊗

π(s)∗ ∈ D∗
π ⊗h D∗

π for each s in G, it follows too that

Γπ(µ) =
∑
s∈G

α(s)π(s)⊗ π(s)∗ ∈ D∗
π ⊗h D∗

π.

(iv) If we let α : G → (B(H) ⊗w∗h B(H))inv be given by α(s) = π(s) ⊗

π(s)∗, then α is norm continuous. Hence

Γπ(M(G)) ⊂ Mα = Dα ⊂ D∗
π ⊗h D∗

π

by (iii) above and Corollary 3.4. �
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Remark 3.6. We note that (3.3) also converges in the CB(B(H))–(B(H)⊗̂

B(H)∗) topology. Indeed, if a ∈ B(H) and η∗ ⊗ ξ is a vector functional in

B(H)∗, then for any s in G we have that

〈π(s)⊗ π(s)∗, a⊗ (η∗ ⊗ ξ)〉 = 〈π(s)aπ(s)∗, η∗ ⊗ ξ〉 = 〈a, (π(s)∗η)∗ ⊗ π(s)∗ξ〉

where s 7→ (π(s)∗η)∗ ⊗ π(s)∗ξ is continuous in the norm topology of B(H)∗.

Hence s 7→ 〈π(s)⊗ π(s)∗, a⊗ (η∗ ⊗ ξ)〉 is continuous. In particular, for each

a in B(H) and µ in M(G) we have that

Γπ(µ)a =
∫

G
π(s)aπ(s)∗dµ(s)

where the integral converges in the weak* topology of B(H)

We observe that it is possible, for each µ in M(G), to see Γπ(µ)|K(H) as

an integral converging in the point-norm topology. However, our approach

for obtaining (3.3) better lends itself to (4.4). �

We let the augmentation ideal in L1(G) be given by

I0(G) =
{

f ∈ L1(G) :
∫

G
f(s)ds = 0

}
.

Theorem 3.7. For any strongly continuous representation π : G → U(H),

the following are equivalent:

(i) π is norm continuous.

(ii) Γπ(L1(G)) ⊂ C∗π ⊗h C∗π.

(iii) there is an f in L1(G) \ I0(G) such that Γπ(f) ∈ C∗π ⊗h C∗π.

Proof. That (i) implies (ii) follows from Proposition 3.5 (iv) and the fact

that C∗π = D∗
π. That (ii) implies (iii) is trivial. Suppose now that f satisfies

statement (iii). Without loss of generality, we may suppose that
∫
G f(s)ds =

1. Then by [4], there exist sequences {ai}i∈N and {bi}i∈N from C∗π such that∑∞
i=1 aia

∗
i and

∑∞
i=1 b∗i bi converge in norm, and

Γπ(f)x =
∞∑
i=1

aixbi
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for each x ∈ B(H). But it then follows from Remark 3.6 that

I =
∫

G
f(s)π(s)Iπ(s)∗ds = Γπ(f)I =

∞∑
i=1

aibi ∈ C∗π.

Hence π is norm continuous by Proposition 3.3. �

In the next section, we will address the necessity of the assumption that

f ∈ L1(G) \ I0(G) in (iii) above.

It is interesting to note that the kernel of Γπ is related to the kernel of

a more familiar representation. Below, we will let H denote the conjugate

Hilbert space and π̄ : G → U(H) denote the conjugate representation. We

will also let π ⊗ π̄ : G → U(H ⊗2 H) be the usual tensor product of repre-

sentations on the Hilbert space H⊗2 H.

Proposition 3.8. ker Γπ = ker(π ⊗ π̄)1.

Proof. We have that µ ∈ ker Γπ if and only if

0 = 〈Γπ(µ), ωξ,η ⊗ ωζ,ϑ〉

for every elementary tensor of vector functionals ωξ,η ⊗ ωζ,ϑ in B(H)∗ ⊗h

B(H)∗. (Note that we earlier had used the notation ωξ,η = η∗⊗ ξ.) We may

compute

〈Γπ(µ), ωξ,η ⊗ ωζ,ϑ〉 =
∫

G
〈π(s)ξ|η〉 〈π(s)∗ζ|ϑ〉 dµ(s)

=
∫

G
〈π(s)ξ|η〉 〈π(s)ϑ|ζ〉dµ(s)

=
∫

G

〈
π ⊗ π̄(s) ξ ⊗ ϑ̄|η ⊗ ζ̄

〉
dµ(s)

=
〈
(π ⊗ π̄)1(µ) ξ ⊗ ϑ̄|η ⊗ ζ̄

〉
.

Thus it follows that µ ∈ ker Γπ if and only if µ ∈ ker(π ⊗ π̄)1. �

In particular, if we let Fπ⊗π̄ be the linear space generated by all of the

coefficient functions, s 7→
〈
π ⊗ π̄(s) ξ ⊗ ϑ̄|η ⊗ ζ̄

〉
, we see that µ ∈ ker Γπ

exactly when µ, as a functional on Cb(G), annihilates Fπ⊗π̄.
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4. Abelian Groups

For this section we let G be a locally compact abelian group, and we let Ĝ

denote its topological dual group. For each s in G, we will let ŝ denote the

associated unitary character on Ĝ, defined by ŝ(σ) = σ(s) for each σ in Ĝ.

As above, we will let π : G → U(H) be a strongly continuous unitary

representation. We let Eπ denote the spectrum of C∗π. Since C∗π is a quotient

of the enveloping C*-algebra C∗(G), and C∗(G) ∼= C0(Ĝ), we may consider

Eπ to be a closed subset of Ĝ. Moreover, the natural isomorphism Fπ :

C∗π → C0(Eπ) satisfies

Fπ

(
π1(f)

)
= f̂ |Eπ

for each f in L1(G), where f̂(σ) = σ1(f) =
∫
G f(s)σ(s)ds for each σ in Ĝ.

We note that our notation f 7→ f̂ , for the Fourier transform, differs from

that of our main reference, [15].

We would like to be able to extend Fπ to some suitable map F̄π on VNπ.

It is not clear that this can be done in general, but it can be done in many

cases.

Lemma 4.1. Consider the following conditions for π or G below:

(a) H admits a maximal countable family of mutually orthogonal cyclic

subspaces for π.

(b) There is a family {Ui}i∈I of separable open subsets of Eπ such that

Eπ =
⋃̇

i∈IUi.

(c) Ĝ has a separable open subgroup.

(d) G is compactly generated.

Then, under any one of these conditions there exists a regular Borel measure

ν on Eπ, bounded on compacta, such that there is a normal ∗-homomorphism

F̄π : VNπ → L∞(Eπ, ν) which extends Fπ.
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Proof. (a) By standard arguments (see [5, §7], for example), VNπ admits

a faithful normal state ω. Then the measure ν given by

(4.1)
∫

Eπ

ϕ(σ)dν(σ) = ω(F−1
π ϕ)

for each ϕ in C0(Eπ), gives rise to the desired map F̄π.

(b) Since Eπ =
⋃̇

i∈IUi, we have that C0(Eπ) = c 0-
⊕

i∈I C0(Ui). If we

let Ci = F−1
π

(
C0(Ui)

)
, then Mi = Ci

w∗
is an ideal in VNπ. The ideals Mi

are mutually orthogonal, and hence if {pi}i∈I is the family of projections for

which Mi = piVNπ for each i, then
∑

i∈I pi = I. Since each Ci is separable,

each Mi is countably generated, and hence there is a normal state ωi on

VNπ with support projection pi. Let νi be the measure on Eπ associated

with ωi as in (4.1). Then supp(νi) = Ui for each i, and ν =
⊕

i∈I νi is the

desired measure.

(c) If Ĝ has a separable open subgroup X, let T be any transversal for

X in Ĝ, and we have that Eπ =
⋃̇

τ∈T (Eπ ∩ τX), and again we obtain (b).

(d) If G is compactly generated, then by [15, 9.8] there is a topological

isomorphism G ∼= Zn×Rm×K, where K is compact. Then Ĝ ∼= Tn×Rm×K̂,

and the subgroup X corresponding to Tn×Rm is open and separable, and

hence (c) holds. �

We will need to use an extension of Fπ of a different nature than in the

lemma above. Since C∗π is an essential ideal in M∗
π, the map Fπ : C∗π →

C0(Eπ) extends to an injective ∗-homomorphism F̃π : M∗
π → Cb(Eπ), such

that Fπ(na) = F̃π(n)Fπ(a) for each n in M∗
π and a in C∗π, by [18, 3.12.8].

We note that for each µ in M(G),

(4.2) F̃π(π1(µ)) = µ̂|Eπ

where for each µ in M(G), µ̂(σ) = σ1(µ) =
∫
G σ(s)dµ(s). Thus µ 7→ µ̂ is

the Fourier-Stieltjes transform. To see the validity of (4.2), observe that for

each f in L1(G) we have

µ̂f̂ |Eπ = µ̂∗f |Eπ = Fπ(π1(µ∗f)) = F̃π(π1(µ))Fπ(f) = F̃π(π1(µ))f̂ |Eπ .
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Thus it follows that F̃π(π1(µ))ϕ = µ̂ϕ for each ϕ in C0(Eπ).

If any of the conditions of Lemma 4.1 hold, then there exists a measure

ν for which there is a normal extension F̄π : VNπ → L∞(Eπ, ν) of Fπ. Then

for any µ in M(G),

(4.3) F̄π(π1(µ)) = µ̂|Eπ

where we identify Cb(Eπ) as a closed subspace of L∞(Eπ, ν). To see (4.3),

we note that if (aβ) is any bounded approximate identity in C∗π, then

weak*- limβ aβ = I in VNπ, thus weak*- limβ Fπ(aβ) = 1Eπ . Hence

F̄π(π1(µ)) = weak*- lim
β

F̄π(π1(µ)aβ) = weak*- lim
β

Fπ(π1(µ)aβ)

= weak*- lim
β

F̃π(π1(µ))Fπ(aβ) = F̃π(π1(µ)) = µ̂|Eπ .

We will make use of the spaces Vb(E), V0(E) and V0(E), which were

defined in (2.3). If ν is any non-negative measure on E, we let

V∞(E, ν) = L∞(E, ν)⊗eh L∞(E, ν).

Spaces of this type are discussed in [22].

Theorem 4.2. If G is a locally compact abelian group and π : G → U(H)

is a strongly continuous unitary representation, then for any µ in M(G) and

(σ, τ) in Eπ×Eπ we have that

(F̃π ⊗ F̃π)Γπ(µ)(σ, τ) = µ̂(στ−1).

In particular, if E is any closed subset of Ĝ and µ ∈ M(G), then u(σ, τ) =

µ̂(στ−1) is an element of Vb(E), and u ∈ V0(E) if µ ∈ L1(G). Moreover, if

E is compact then u ∈ V0(E).

Proof. The result will be established in three stages. The first two of these

require additional hypotheses and are preparatory for the general case.

I. Suppose that any one of the conditions of Lemma 4.1 is satisfied. Let

ν be the measure on Eπ and let F̄π : VNπ → L∞(Eπ, ν) be the map given

there.
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If µ ∈ M(G), we have that

(F̃π ⊗ F̃π)Γπ(µ) = (F̄π ⊗ F̄π)
∫

G
π(s)⊗ π(s)∗dµ(s)

=
∫

G
ŝ|Eπ ⊗ ¯̂s|Eπdµ(s)(4.4)

where the latter integral converges in the weak* topology of V∞(Eπ, ν).

For (σ, τ) in Eπ×Eπ let

u(σ, τ) = µ̂(στ−1).

Then u ∈ Vb(Eπ). Indeed, we have that µ̂ ∈ B(Ĝ), the Fourier-Stieltjes

algebra which is defined in [10]. Thus there is a Hilbert space L, a con-

tinuous unitary representation ρ : G → U(L), and vectors ξ, η in L with

‖µ‖ = ‖ξ‖ ‖η‖, such that µ̂(σ) = 〈ρ(σ)ξ|η〉 for each σ in Ĝ. If {ξi}i∈I is an

orthonormal basis for L, then we have, using Parseval’s formula, that

µ̂(στ−1) =
〈
ρ(στ−1)ξ|η

〉
=
∑
i∈I

〈ρ(σ)ξ|ξi〉 〈ξi|ρ(τ)η〉

for any (σ, τ) in Eπ×Eπ. Hence

u =
∑
i∈I

〈ρ(·)ξ|ξi〉 ⊗ 〈ρ(·)η|ξi〉 ∈ Vb(Eπ)

with ‖u‖eh ≤ ‖ξ‖ ‖η‖ = ‖µ‖. (This is similar to the proof of [23, Prop.

5.1].) We note that if µ ∈ L1(G), then ρ can be taken to be the left regular

representation and hence each 〈ρ(·)ξ|ξi〉 and 〈ρ(·)η|ξi〉 is in C0(Eπ). Hence,

in this case we would have that u ∈ V0(Eπ).

We wish to establish that

(4.5) u = (F̃π ⊗ F̃π)Γπ(µ).
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We will do this by using the dual pairing (2.1). If g ⊗ h is an elementary

tensor in L1(Eπ, ν)⊗h L1(Eπ, ν), then

〈u, g ⊗ h〉 =
∫

Eπ

∫
Eπ

g(σ)h(τ)µ̂(στ−1)dν(σ)dν(τ)

=
∫

Eπ

∫
Eπ

g(σ)h(τ)
(∫

G
σ(s)τ(s)dµ(s)

)
dν(σ)dν(τ)

=
∫

G

(∫
Eπ

g(σ)ŝ(σ)dν(σ)
)(∫

Eπ

h(τ)ŝ(τ)dν(τ)
)

dµ(s)

where the version of Fubini’s Theorem required is [15, 13.10], noting that g

and h each have ν-σ-finite supports. On the other hand, by (4.4),

〈(F̃π ⊗ F̃π)Γπ(µ),g ⊗ h〉 =
〈∫

G
ŝ|Eπ ⊗ ¯̂s|Eπdµ(s), g ⊗ h

〉
=
∫

G

(∫
Eπ

g(σ)ŝ(σ)dν(σ)
)(∫

Eπ

h(τ)ŝ(τ)dν(τ)
)

dµ(s)

and this shows that (4.5) holds.

II. Suppose that µ is supported on a compactly generated open subgroup

H of G.

Let us first compute the spectrum Eπ|H of C∗π|H . We note that Ĥ = Ĝ|H
and that the restriction map r : Ĝ → Ĝ|H is a homomorphic topological

quotient map by [15, 24.5]. Moreover, ker r is compact, by [15, 23.29(a)].

Then Eπ|H = r(Eπ). To see this, observe that the map ι : L1(H) → L1(G),

which we define to be the inverse of f 7→ f |H , extends to an injective ∗-

homomorphism ιπ : C∗π|H → C∗π. In particular, then, each multiplicative

linear functional on C∗π|H is necessarily the restriction of such a functional

on C∗π. Let rπ = r|Eπ . Then, the map rπ : Eπ → r(Eπ) induces an injective

∗-homomorphism jrπ : C0(r(Eπ)) → C0(Eπ), whose image is the subalgebra

of all functions which are constant on relative cosets of ker r in Eπ. Now, if

g ∈ L1(H), and σ ∈ Eπ then

(4.6) ι̂g(σ) =
∫

G
ιg(s)σ(s)ds =

∫
H

g(s)r(σ)(s)ds = ĝ(rπ(σ)) = jrπ ĝ(σ)
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from which it follows that every character on C∗π|H is from rπ(Eπ). Moreover,

it follows from (4.6) that

Fπ◦ιπ = jrπ
◦Fπ|H .

Now, we let ι̃ : M(H) → M(G) be the homomorphism whose inverse is

κ 7→ κH , where for any Borel subset B of G, κH(B) = κ(B ∩ H). Then ι

induces an injective ∗-homomorphism ι̃π : M∗
π|H → M∗

π. It follows from the

discussion above that F̃π|H : M∗
π|H → Cb(r(Eπ)). Then

(4.7) ̃rπ
◦F̃π|H = F̃π◦ι̃π

where ̃rπ : Cb(Eπ|H ) → Cb(Eπ) is the map induced by rπ : Eπ → Eπ|H .

Indeed, if κ ∈ M(H), then for each σ in Eπ we have that ̂̃ικ(σ) = ̃rπ κ̂(σ),

by a computation analagous to (4.6), above. Next, we wish to establish that

(4.8) Γπ◦ι̃ = (ι̃π ⊗ ι̃π)◦Γπ|H .

If κ ∈ M(H) and x ∈ B(H)⊗h B(H), then

〈Γπ(ι̃κ), x〉 =
∫

G
〈π(s)⊗ π(s)∗, x〉 dι̃κ(s)

=
∫

H
〈π(s)⊗ π(s)∗, x〉 dκ(s) =

〈
Γπ|H (κ), x

〉
whence, as elements of B(H) ⊗eh B(H), Γπ(ι̃κ) = Γπ|H (κ). However, in

B(H), the inclusion map M∗
π|H ↪→ M∗

π is the map ι̃π, and thus (4.8) holds.

Now, since µ is supported on H, we have that µ = ι̃κ for some κ ∈ M(H).

Then for each (σ, τ) in Eπ×Eπ we have that

µ̂(στ−1) = ̂̃ικ(στ−1) = κ̂(r(στ−1) = κ̂(rπ(σ)rπ(τ−1))

= (F̃π|H ⊗ F̃π|H )Γπ|H (κ)(rπ(σ), rπ(τ)), by part I

= (̃rπ ⊗ ̃rπ)(F̃π|H ⊗ F̃π|H )Γπ|H (κ)(σ, τ)

= (F̃π ⊗ F̃π)(ι̃π ⊗ ι̃π)Γπ|H (κ)(σ, τ), by (4.7)

= (F̃π ⊗ F̃π)Γπ(ι̃κ)(σ, τ), by (4.8)

= (F̃π ⊗ F̃π)Γπ(µ)(σ, τ).
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III. We now cover the case of a general µ in M(G).

Let U be a relatively compact symmetric open neighbourhood of the

identity in G. Then H =
⋃∞

n=1 Un is a compactly generated open subgroup

of G. We note that if T is a transversal for H in G then

µ =
∑
t∈T

µtH

which is an absolutely summable series. For each t in T let

µt = δt−1∗(µtH)

so supp(µt) ⊂ H and µ =
∑

t∈T δt∗µt. We then have that

(F̃π ⊗ F̃π)Γπ(µ) =
∑
t∈T

(F̃π ⊗ F̃π)Γπ(δt∗µt)

=
∑
t∈T

(F̃π ⊗ F̃π) [(π(t)⊗ π(t)∗)Γπ(µt)]

=
∑
t∈T

(t̂|Eπ ⊗
¯̂t|Eπ)(F̃π ⊗ F̃π)Γπ(µt).

Hence if (σ, τ) ∈ Eπ×Eπ, we obtain

(F̃π ⊗ F̃π)Γπ(µ)(σ, τ) =
∑
t∈T

t̂(σ)t̂(τ)(F̃π ⊗ F̃π)Γπ(µt)(σ, τ)

=
∑
t∈T

t̂(σ)t̂(τ)µ̂t(στ−1), by part II

=
∑
t∈T

δ̂t(στ−1)µ̂t(στ−1)

=
∑
t∈T

δ̂t∗µt(στ−1) = µ̂(στ−1).

Thus our first claim is established in general.

If E is any closed subset of Ĝ then by [14, 33.7] there is a representation

π : G → U(H) for which Eπ = E. Hence

u(σ, τ) = µ̂(στ−1) = (F̃π ⊗ F̃π)Γπ(µ)(σ, τ)

defines an element of Vb(E), and of V0(E) if µ ∈ L1(G). If E is compact,

we note that any representation π for which Eπ = E, is norm continuous
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by Proposition 3.3, since C∗π ∼= C0(E), which is unital. Thus Γπ(M(G)) =

Γπ(L1(G)) ⊂ C∗π ⊗h C∗π. Hence u, as above, is in V0(E). �

We can now obtain a generalisation of [24, Prop. 5.7]. This is a straight-

forward corollary of Theorems 2.4 and 4.2.

Corollary 4.3. If G is a locally compact abelian group, π : G → U(H) is

a strongly continuous representation and µ ∈ M(G), then the following are

equivalent:

(i) Γπ(µ) is positive.

(ii) Γπ(µ) is completely positive.

(iii) (σ, τ) 7→ µ̂(στ−1) is positive definite on Eπ×Eπ.

The next result follows directly from Theorem 4.2, but can also be deduced

from Proposition 3.8.

Corollary 4.4. If G is a locally compact abelian group and π : G → U(H)

is a strongly continuous representation then

ker Γπ = {µ ∈ M(G) : µ̂|EπE−1
π

= 0}.

Let us now address the assumption that f ∈ L1(G)\I0(G) in Theorem 3.7

(iii). We want to show that having an f in I0(G) for which Γπ(f) ⊂ C∗π⊗hC∗π

does not imply that π is norm continuous. First, following Corollary 4.4

we see that that Γπ(f) = 0 if the support of f̂ misses the difference set

EπE−1
π . Thus it is possible that Γπ(f) = 0 ∈ C∗π ⊗h C∗π, though π need

not be norm continuous, i.e. Eπ need not be compact. Thus we may ask if

Γπ(L1(G)) ∩
(
C∗π ⊗h C∗π

)
= {0} when π is not norm continuous. However,

this may not happen, as the next example shows.

Example 4.5. Let G = T, and identify T̂ = Z. Define π : T → U(`2(N))

for each z in T by

π(z)
(
ξn

)
n∈N =

(
zn2

ξn

)
n∈N

.
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Then Eπ = {n2 : n ∈ N}, which is not compact in Z. Hence C∗π ∼= c 0(Eπ),

which is not unital, so π is not norm continuous on T, by Proposition 3.3.

Fix k in Z \ {0} and let k̂(z) = zk. Then for each pair n, m in N, using

normalized Haar measure on T and Theorem 4.2, we have that

(Fπ ⊗ Fπ)Γπ(k̂)(n̂, m̂) =
∫

T
zkzn2

z̄m2
dz =

1 if m2 − n2 = k

0 otherwise
.

The set of solutions to m2 − n2 = (m − n)(m + n) = k is clearly finite; we

shall write them {(n1,m1), . . . , (nl(k),ml(k))}. We then see that

(Fπ ⊗ Fπ)Γπ(k̂) =
l(k)∑
i=1

1(ni,mi) =
l(k)∑
i=1

1ni ⊗ 1mi ∈ V0(Eπ).

Hence Γπ(k̂) ∈ C∗π ⊗h C∗π. In fact, since I0(T) = span
{

k̂ : k ∈ Z \ {0}
}

, we

have that Γπ(I0(T)) ⊂ C∗π ⊗h C∗π.

We remark that for a general locally compact abelian group G, and rep-

resentation π : G → U(H), V0(Eπ) ⊂ C0(Eπ×Eπ). Thus if f in L1(G) is

such that f̂(σ) 6= 0 for some σ in Ĝ such that Eπ ∩ σEπ is not compact,

then Γπ(f) 6∈ C∗π ⊗h C∗π by Theorem 4.2. Thus if Eπ ∩ σEπ is compact for

no σ in Ĝ then we have that

Γπ(L1(G)) ∩
(
C∗π ⊗h C∗π

)
= {0}.

Note that Eπ ∩ σEπ is never compact if Eπ = Ĝ, which occurs, for example

when π is the left regular representation λ. It is shown in [24, Cor. 4.7]

that Γλ is an isometry. This was extended to non-abelian groups in [11]

and expanded upon in [16], while [17] contains a proof that Γλ is a complete

isometry. An analogue for the Fourier algebra of an amenable group is shown

in [23, Cor. 5.4].

Question 4.6. If G = R, then [0,∞) ∩
(
s + [0,∞)

)
= [min{s, 0},∞) is

never compact. Thus if π is a representation of R such that Eπ = [0,∞),

then Γπ : M(R) → M∗
π⊗eh M∗

π is injective by Corollary 4.4. Is Γπ isometric?
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How about Γπ|L1(R)? More generally, under what conditions for an arbitrary

abelian group G and representation π is Γπ, or Γπ|L1(G), a quotient map?
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[5] J. Dixmier. Les algèbres d’opérateurs dans l’espace Hilbertian, volume 25 of Cahiers

scientifiques. Gauthier-Villars, Paris, 1969.

[6] E. G. Effros and A. Kisimoto. Module maps and Hochschild-Johnson cohomology.

Indiana U. Math. J., 36:257–276, 1987.

[7] E. G. Effros, J. Kraus, and Z.-J. Ruan. On two quantized tensor products. In Operator

algebras, mathematical physics, and low-dimensional topology (Istanbul, 1991), pages

125–145, Wellesley, MA, 1993. A K Peters.

[8] E. G. Effros and Z.-J. Ruan. Operator Spaces, volume 23 of London Math. Soc., New

Series. Claredon Press, Oxford Univ. Press, New York, 2000.

[9] E. G. Effros and Z.-J. Ruan. Operator convolution algebras: an approach to quantum

groups. To appear in J. Operator Theory., 2002.
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