Math 367 Homework Assignment 1 SOLUTIONS

1. (a) There is a real number x such that $x^{3} \leq 0$. (There are many other possible such statements, for example, "There exists a real number x for which x^{3} is not greater than 0.")
(b) All squares are rhombuses.
(c) There are integers m and n such that $m n$ is even and m is not even. (There are many other possible such statements, for example, "not even" could be replaced by "odd".)
(d) Sam is not a fourth grader or Rachel is not a fourth grader.
(e) Mandy was not born in Oklahoma and Jack was not born in Oklahoma.
2. (a) FALSE. Counterexample: $x=-2$ (Any negative number, or 0, is a counterexample.)
(b) FALSE. Counterexample: $m=3, n=2$ (There are many other counterexamples.)
(c) TRUE. Proof: Let m and n be even integers. Then $m=2 k$ and $n=2 p$ for some integers k and p. Their difference is

$$
m-n=2 k-2 p=2(k-p)
$$

which is even.
(d) FALSE. Counterexample: Let $m=4, n=6$. Then $m+n=10$, which is even, and m and n are not odd.
3. Let $n, n+1, n+2$ be consecutive integers. Then

$$
n+(n+1)+(n+2)=3 n+3=3(n+1)
$$

which is divisible by 3 .
4. (a) (i) TRUE.
(ii) If $x^{2}=4$, then $x=2$. FALSE. Counterexample: $x=-2$
(b) (i) FALSE. Counterexample: $x=-3$
(ii) If $x=3$, then $|x|=3$. TRUE.
(c) (i) FALSE. Counterexample: $x=-2$
(ii) If $x^{2}<1$, then $x<1$. TRUE.
(d) (i) TRUE. (ii) If $x^{3}<1$, then $x<1$. TRUE.
5. The contrapositive is: For all integers m and n, if m is even or n is even, then $m n$ is even.

Proof: Let m and n be integers. Suppose first that m is even. Then $m=2 k$ for some integer k. It follows that

$$
m n=(2 k) n=2(k n),
$$

which is even. In case m is odd and n is even, a similar calculation shows that $m n$ is even.
6. (1) For all integers n, if n is even, then n^{3} is even.

Proof: Let n be an even integer, so that $n=2 k$ for some integer k. Then $n^{3}=(2 k)^{3}=8 k^{3}=$ $2\left(4 k^{3}\right)$, which is even.
(2) For all integers n, if n^{3} is even, then n is even.

The contrapositive of this statement is
For all integers n, if n is odd, then n^{3} is odd.
Proof: Let n be an odd integer. Then $n=2 k+1$ for some integer k. It follows that

$$
\begin{aligned}
n^{3}=(2 k+1)^{3} & =(2 k+1)(2 k+1)^{2} \\
& =(2 k+1)\left(4 k^{2}+4 k+1\right) \\
& =8 k^{3}+8 k^{2}+2 k+4 k^{2}+4 k+1 \\
& =8 k^{3}+12 k^{2}+6 k+1 \\
& =2\left(4 k^{3}+6 k^{2}+3 k\right)+1,
\end{aligned}
$$

which is odd.

