Math 367 Homework Assignment 3 SOLUTIONS

7.

Upper left corner: translation Upper right corner: reflection Lower left corner: reflection Lower right corner: reflection, rotation, translation (in any order)

(Note: Other answers are possible. Any isometry is a composition of at most 3 reflections, and there are many compositions of isometries that are equal to a given one.)

10.

 $\{A, H, S, V, X\}, \{B, E, K, W, Y\}, \{C, G, O, Q, U\}, \{D, F, J, N, R\}, \{I, L, M, P, T\}$ There are 5 congruence classes. (The instructions ask these to be denoted instead by circles with the letters written inside.)

11.

Answers will vary! But, for example:

 $\{A, H, S, V, X\}$: One twin pair in a corner, with no isolated point next to it. $\{C, G, O, Q, U\}$: One twin pair not in a corner. $\{D, F, J, N, R\}$: Two twin pairs, not three isolated points in a row.

 $\{I, L, M, P, T\}$: One twin pair in a corner, with an isolated point next to it.

15.

(i) BD

(ii) $\{C\}$ (the answer C, without set braces, is okay, but technically it should be written this way since it is a set)

(iii) \overrightarrow{AC}

(iv) \overrightarrow{CD} (this may also be written as \overrightarrow{BC} etc.)

(v) AC

(vi) \overrightarrow{BD} (this may also be written as \overrightarrow{BC})

16.

translation, reflection (Other answers are possible. This answer is, in more detail, to translate the $\triangle ABC$ so that point A coincides with point Y. Then reflect over the line containing Y and parallel to \overrightarrow{XZ} . But this level of detail is not required for this problem.)