2.5 : Multiplication of Matrices

- If A is a row matrix of size $1 \times n$,
and B is a column matrix of size $n \times 1$,
then the matrix product of A and B is defined by

$$
A B=\left[\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & \cdots & a_{n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{n}
\end{array}\right]=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+\cdots+a_{n} b_{n}
$$

EXAMPLE 1. Let $A=\left[\begin{array}{lllll}1 & 2 & -3 & 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{lllll}1 & 2 & 0 & 1 & -1\end{array}\right]$. Find $B A^{T}$.

- If A is an $m \times p$ matrix and matrix B is $p \times n$, then the product $A B$ is an $m \times n$ matrix, and its element in the i th row and j th column is the product of the i th row of A and the j th column of B.
- RULE for multiplying matrices:

The column of the 1st matrix must be the same size as the row of the 2 nd matrix.

EXAMPLE 2. Multiply
(a) $\left[\begin{array}{ll}3 & -2\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{ll}3 & -2\end{array}\right]\left[\begin{array}{c}-1 / 3 \\ -1\end{array}\right]$
(c) $\left[\begin{array}{cc}-1 & -2 \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}2 & -4 \\ -1 & 2\end{array}\right]$
(d) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$
(e) $\left[\begin{array}{ccc}1 & 2 & 5 \\ 3 & 2 & -3 \\ 4 & 3 & 9\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(f) $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
(g) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$

- Identity Matrix

The identity matrix of size n is given by $I_{n}=\left[\begin{array}{cccccc}1 & 0 & . & . & . & 0 \\ 0 & 1 & . & . & . & 0 \\ . & . & . & . & . & . \\ . & . & . & . & . \\ . & . & . & . & . & . \\ 0 & 0 & . & . & . & 1\end{array}\right]$

- FACTS and LAWS FOR MATRIX MULTIPLICATION: If the size requirements are met for matrices A, B and C, then
- $A B \neq B A$ (NOT always Commutative)
$-A(B+C)=A B+A C$ (always Distributive)
- $(A B) C=A(B C)$ (always Associative)
- $A B=0$ does not imply that $A=0$ or $B=0$.
$-A B=A C$ does not imply that $B=C$.
- $I_{n} A=A$ for every $n \times p$ matrix A.
$-B I_{n}=B$ for every $s \times n$ matrix B.
- $I_{n} A=A I_{n}=A$ for any square matrix A of size n.

NOTE: Since the multiplication of matrices is NOT commutative, you MUST multiply left to right.

EXAMPLE 3. The sizes of matrices A, B, C, D are given in the table below:

A	B	C	D
2×3	3×5	3×3	5×5

Find the size of the following matrices whenever they are defined.
(a) $A B$
(e) $C B D$
(b) $B A$
(f) $B D+C B$
(c) $A B D$
(g) $D^{2}+I_{5}$
(d) $A B B^{T}$
(h) $B I_{3}$

EXAMPLE 4. Given $J=\left[\begin{array}{cc}a & -2 \\ b & 2 c\end{array}\right], \quad K=\left[\begin{array}{cc}3 & 0 \\ 4 & -5\end{array}\right]$ and $P=\left[\begin{array}{cc}1 & 10 \\ -14 & 20\end{array}\right]$
Find the values of a, b, c s.t. $J K=P$

- A system of linear equations can be written as a matrix equation $A X=B$.

EXAMPLE 5. Express the following system of linear equations in matrix form:

$$
2 x+4 y-7 z=6
$$

(a) $-x-3 y+11 z=0$

$$
-y+z=1
$$

(b) $\begin{aligned} x_{1}+5 x_{2} & =16 \\ 4 x_{1}-3 x_{2} & =11\end{aligned}$

- Matrix product is used for application problems:

EXAMPLE 6. Matrix A shows the number of calories from fat, protein and carbohydrates per unit of each food. Matrix B shows the number of units of each food eaten by each person. Explain the meaning of entries of $B A$ and $A B$.

$$
\left.A=\begin{array}{c}
\\
\begin{array}{c}
\text { fat } \\
\text { Food A }
\end{array} \\
\begin{array}{c}
\text { Food B B }
\end{array} \\
\text { Food C }
\end{array} \text { protein } 1 \begin{array}{ccc}
25 & 8 & 12 \\
31 & 25 & 19 \\
30 & 12 & 18
\end{array}\right] \quad, \quad B=\begin{gathered}
\text { fat } \\
\text { carbs } \\
\text { protein }
\end{gathered}\left[\begin{array}{ccc}
3 & 1 & 2 \\
0 & 5 & 6 \\
2 & 2 & 0
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
& B A=\begin{array}{c}
\text { Tom } \\
\text { cat } \\
\text { carbs } \\
\text { protein }
\end{array}\left[\begin{array}{ccc}
3 & 1 & 2 \\
0 & 5 & 6 \\
2 & 2 & 0
\end{array}\right] \quad * \begin{array}{ccc}
\text { fat carbs } & \text { protein } \\
\begin{array}{c}
\text { Food A }
\end{array} \\
\begin{array}{c}
\text { Food B } \\
\text { Food C }
\end{array}
\end{array}\left[\begin{array}{ccc}
25 & 8 & 12 \\
31 & 25 & 19 \\
30 & 12 & 18
\end{array}\right] \quad\left[\begin{array}{ccc}
166 & 73 & 91 \\
335 & 197 & 203 \\
112 & 66 & 62
\end{array}\right] \\
& \begin{array}{ccc}
& \begin{array}{ccc}
\text { fat } & \text { carbs } & \text { protein } \\
\text { Food A }
\end{array} \\
\begin{array}{c}
\text { Food B } \\
\text { Food C }
\end{array}
\end{array}\left[\begin{array}{ccc}
25 & 8 & 12 \\
31 & 25 & 19 \\
30 & 12 & 18
\end{array}\right] \quad * \begin{array}{c}
\text { fat }
\end{array} \quad \begin{array}{ccc}
\text { carbs } \\
\text { protein }
\end{array}\left[\begin{array}{ccc}
3 & 1 & 2 \\
0 & 5 & 6 \\
2 & 2 & 0
\end{array}\right]=\left[\begin{array}{ccc}
99 & 89 & 98 \\
131 & 194 & 212 \\
126 & 126 & 132
\end{array}\right]
\end{aligned}
$$

EXAMPLE 7. Matrix A below gives the percentage of eligible voters in a city, classified according to party affiliation and age group:

$$
A=\left[\begin{array}{lll}
0.50 & 0.30 & 0.20 \\
0.45 & 0.38 & 0.17 \\
0.38 & 0.52 & 0.10
\end{array}\right]
$$

where rows $1,2 \& 3$ represent Under 35, 35-55 and over 55, respectively. Columns $1,2 \& 3$ represent Democrat, Republican and Independent, respectively. The city currently has 28, 000 eligible voters under the age of 35 . They have 44, 000 eligible voters between 35-55 years of age, and 18, 000 eligible voters over 55 years old. Find the matrix B representing the population of eligible voters. Then use it to find a matrix giving the total number of eligible voters in the city who vote Independent.

