2.5 : Multiplication of Matrices

• If A is a row matrix of size $1 \times n$,

and B is a column matrix of size $n \times 1$,

then the **matrix product** of A and B is defined by

$$AB = \begin{bmatrix} a_1 & a_2 & a_3 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix} = a_1b_1 + a_2b_2 + a_3b_3 + \cdots + a_nb_n$$

EXAMPLE 1. Let $A = \begin{bmatrix} 1 & 2 & -3 & 0 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \end{bmatrix}$. Find BA^T .

- If A is an $m \times p$ matrix and matrix B is $p \times n$, then the product AB is an $m \times n$ matrix, and its element in the *i*th row and *j*th column is the product of the *i*th row of A and the *j*th column of B.
- RULE for multiplying matrices:

The column of the 1st matrix must be the same size as the row of the 2nd matrix.

EXAMPLE 2. Multiply

(a)
$$\begin{bmatrix} 3 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

(b) $\begin{bmatrix} 3 & -2 \end{bmatrix} \begin{bmatrix} -1/3 \\ -1 \end{bmatrix}$
(c) $\begin{bmatrix} -1 & -2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -4 \\ -1 & 2 \end{bmatrix}$

(d)
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$

(e) $\begin{bmatrix} 1 & 2 & 5 \\ 3 & 2 & -3 \\ 4 & 3 & 9 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
(f) $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
(g) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$

• Identity Matrix

	1	0				0]	
	0	1	•	•	•	0	
The identity matrix of size n is given by $I_n =$	•	•	•	•	•	•	
	•	•	•	•	•		
	•	•	•	•	•	•	
	0	0	•	•	•	1	

- FACTS and LAWS FOR MATRIX MULTIPLICATION: If the size requirements are met for matrices A, B and C, then
 - $-AB \neq BA$ (NOT always Commutative)
 - -A(B+C) = AB + AC (always Distributive)
 - -(AB)C = A(BC) (always Associative)
 - -AB = 0 does not imply that A = 0 or B = 0.
 - -AB = AC does not imply that B = C.
 - $-I_n A = A$ for every $n \times p$ matrix A.
 - $-BI_n = B$ for every $s \times n$ matrix B.
 - $-I_nA = AI_n = A$ for any square matrix A of size n.

NOTE: Since the multiplication of matrices is NOT commutative, you MUST multiply left to right.

EXAMPLE 3. The sizes of matrices A, B, C, D are given in the table below:

A	В	C	D
2×3	3×5	3×3	5×5

Find the size of the following matrices whenever they are defined.

(a)
$$AB$$
 (e) CBD

(b) BA (f) BD + CB

(c)
$$ABD$$
 (g) $D^2 + I_5$

(d) ABB^T (h) BI_3

EXAMPLE 4. Given
$$J = \begin{bmatrix} a & -2 \\ b & 2c \end{bmatrix}$$
, $K = \begin{bmatrix} 3 & 0 \\ 4 & -5 \end{bmatrix}$ and $P = \begin{bmatrix} 1 & 10 \\ -14 & 20 \end{bmatrix}$
Find the values of $a, b, c \ s.t. \ JK = P$

• A system of linear equations can be written as a matrix equation AX = B.

EXAMPLE 5. Express the following system of linear equations in matrix form:

$$2x + 4y - 7z = 6$$
(a) $-x - 3y + 11z = 0$
 $-y + z = 1$

• Matrix product is used for application problems:

EXAMPLE 6. Matrix A shows the number of calories from fat, protein and carbohydrates per unit of each food. Matrix B shows the number of units of each food eaten by each person. Explain the meaning of entries of BA and AB.

		fat	carbs	protein				Tom	Bob	Jill	
4 —	Food A	25	8	12		P	fat	3	1	2]
A –	Food B	31	25	$\begin{bmatrix} 12\\19\\10 \end{bmatrix}$,	D =	carbs	0	5	6	
	Food C	30	12	18			protein	2	2	0	

Solution:

BA =	fat carbs protein	Tom 3 0 2	Bob 1 5 2	$\begin{bmatrix} Jill \\ 2 \\ 6 \\ 0 \end{bmatrix}$	*	Food A Food B Food C	fat [25 31 30	carbs 8 25 12	protein 12 19 18	=	$\begin{bmatrix} 166\\ 335\\ 112 \end{bmatrix}$	73 197 66	$\begin{bmatrix} 91\\203\\62 \end{bmatrix}$	
AB =	Food A Food B Food C	fat [25 [31 [30]	carbs 8 25 12	$\begin{bmatrix} 12 \\ 19 \\ 18 \end{bmatrix}$	1	fat carbs protein	$\begin{bmatrix} 3\\ 0\\ 2 \end{bmatrix}$	m Bob 1 5 2	$\begin{bmatrix} 3 & \text{Jill} \\ 2 \\ 6 \\ 0 \end{bmatrix}$	=	$\begin{bmatrix} 99\\131\\126\end{bmatrix}$	89 194 126	$\begin{bmatrix} 98\\212\\132 \end{bmatrix}$	

EXAMPLE 7. Matrix A below gives the percentage of eligible voters in a city, classified according to party affiliation and age group:

$$A = \left[\begin{array}{rrrr} 0.50 & 0.30 & 0.20 \\ 0.45 & 0.38 & 0.17 \\ 0.38 & 0.52 & 0.10 \end{array} \right]$$

where rows 1,2&3 represent Under 35, 35-55 and over 55, respectively. Columns 1,2&3 represent Democrat, Republican and Independent, respectively. The city currently has 28,000 eligible voters under the age of 35. They have 44,000 eligible voters between 35-55 years of age, and 18,000 eligible voters over 55 years old. Find the matrix B representing the population of eligible voters. Then use it to find a matrix giving the total number of eligible voters in the city who vote Independent.