2.5 : Multiplication of Matrices

• If A is a row matrix of size $1 \times n$, $A = [a_1 \ a_2 \ ... \ a_n]$

1xn

and B is a column matrix of size
$$n \times 1$$
, $B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$ $n \times 1$

$$A \cdot B = C$$

then the matrix product of A and B is defined by

$$AB = \begin{bmatrix} a_1 & a_2 & a_3 & \cdots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix} = a_1b_1 + a_2b_2 + a_3b_3 + \cdots + a_nb_n$$

EXAMPLE 1. Let
$$A = \begin{bmatrix} 1 & 2 & -3 & 0 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \end{bmatrix}$. Find BA^{T} .

$$\begin{bmatrix} A & B \\ B & A \end{bmatrix}$$

$$\begin{bmatrix} 1 \times 5 \end{bmatrix} \cdot \begin{bmatrix} 1 \times 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 \times 5 \end{bmatrix} \cdot \begin{bmatrix} 1 \times 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 \times 5 \end{bmatrix} \cdot \begin{bmatrix} 5 \times 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \times 5 \end{bmatrix} \cdot \begin{bmatrix} 5 \times 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \times 5 \end{bmatrix} \cdot \begin{bmatrix} 5 \times 1 \end{bmatrix}$$

Title: May 28-4:39 PM (1 of 15)

[m x p].[p x n] -> [m x n]

• If A is an $m \times p$ matrix and matrix B is $p \times n$, then the product AB is an $m \times n$ matrix, and its element in the *i*th row and *j*th column is the product of the *i*th row of A and the *j*th column of B.

• RULE for multiplying matrices:

The column of the 1st matrix must be the same size as the row of the 2nd matrix.

Title: May 28-5:16 PM (2 of 15)

EXAMPLE 2. Multiply

(a)
$$\begin{bmatrix} 3 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 3 \cdot [+ (-2) \cdot] = 1$$

(b)
$$\begin{bmatrix} 3 & -2 \end{bmatrix} \begin{bmatrix} -1/3 \\ -1 \end{bmatrix} = 3 \left(\frac{1}{3} \right) + (-2) \cdot (-1) = -[+2 =]$$

(b)
$$\begin{bmatrix} 3 & -2 \end{bmatrix} \begin{bmatrix} -1/3 \\ -1 \end{bmatrix} = 3\left(\frac{1}{3}\right) + (-2) \cdot (-1) = -1 + 2 = 1$$
(c)
$$\begin{bmatrix} -1 & -2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -4 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 &$$

(d)
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$
 undefined

(e)
$$\begin{bmatrix} 1 & 2 & 5 \\ 3 & 2 & -3 \\ 4 & 3 & 9 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} YY & YG & YW \\ GY & GG & GW \\ WY & WG & WW \end{bmatrix} = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 2 & -3 \\ 4 & 3 & 9 \end{bmatrix}$$

(f)
$$\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 2 \cdot 1 & 1 \cdot 1 + 2 \cdot 1 \\ 3 \cdot 1 + 2 \cdot 1 & 3 \cdot 1 + 2 \cdot 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 5 & 5 \end{bmatrix}$$

(g)
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 + 1 \cdot 3 \\ 1 \cdot 1 + 1 \cdot 3 \end{bmatrix} \begin{bmatrix} 1 \cdot 2 + 1 \cdot 2 \\ 1 \cdot 1 + 1 \cdot 3 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix}$$

Title: May 28-5:21 PM (3 of 15)

• Identity Matrix

The identity matrix of size
$$n$$
 is given by $I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 \end{bmatrix}$; $\mathbf{T_3} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$

- FACTS and LAWS FOR MATRIX MULTIPLICATION: If the size requirements are met for matrices A, B and C, then
 - $-AB \neq BA$ (NOT always Commutative)
 - -A(B+C) = AB + AC (always Distributive)
 - -(AB)C = A(BC) (always Associative)
 - -AB = 0 does not imply that A = 0 or B = 0.
 - -AB = AC does not imply that B = C.
 - $-I_nA = A$ for every $n \times p$ matrix A.
 - $-BI_n = B$ for every $s \times n$ matrix B.
 - $-I_nA = AI_n = A$ for any square matrix A of size n.

NOTE: Since the multiplication of matrices is NOT commutative, you MUST multiply left to right.

EXAMPLE 3. The sizes of matrices A, B, C, D are given in the table below:

A	B	C	D
2×3	3×5	3×3	5×5

Find the size of the following matrices whenever they are defined.

(a)
$$AB$$

$$\begin{bmatrix} 2 \times 3 \end{bmatrix} \cdot \begin{bmatrix} 3 \times 5 \end{bmatrix}$$
(b) BA

$$\begin{bmatrix} 3 \times 5 \end{bmatrix} \cdot \begin{bmatrix} 9 \times 3 \end{bmatrix}$$

$$\text{undefined}$$
(c) ABD

$$\begin{bmatrix} 2 \times 5 \end{bmatrix} \begin{bmatrix} 5 \times 5 \end{bmatrix}$$

$$\begin{bmatrix} 2 \times 5 \end{bmatrix} \begin{bmatrix} 5 \times 5 \end{bmatrix}$$
(d) ABB^{T}

$$\begin{bmatrix} 2 \times 5 \end{bmatrix} \begin{bmatrix} 5 \times 3 \end{bmatrix}$$

$$\begin{bmatrix} 2 \times 3 \end{bmatrix}$$

(g)
$$D^2 + I_5 = D \cdot D + L_5$$

 $(5 \times 5) [5 \times 5] + [5 \times 5]$

(h)
$$BI_3$$

$$[3 \times 5][3 \times 3]$$
undefined

Title: May 28-5:23 PM (5 of 15)

EXAMPLE 4. Given
$$J = \begin{bmatrix} a & -2 \\ b & 2c \end{bmatrix}$$
, $K = \begin{bmatrix} 3 & 0 \\ 4 & -5 \end{bmatrix}$ and $P = \begin{bmatrix} 1 & 10 \\ -14 & 20 \end{bmatrix}$
Find the values of a, b, c s.t. $JK = P$

$$\begin{bmatrix} A & -2 \\ b & 2c \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 4 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 10 \\ -14 & 20 \end{bmatrix}$$

$$\begin{bmatrix} 3a + (-2)^4 & a \cdot 0 + (-2)^{(-5)} \\ 3b + 2c \cdot 4 & b \cdot 0 + 2c \cdot (-5) \end{bmatrix} = \begin{bmatrix} 1 & 10 \\ -14 & 20 \end{bmatrix}$$

$$\begin{bmatrix} 3a - 8 & 10 \\ 3b + 8c & -10c \end{bmatrix} = \begin{bmatrix} 1 & 10 \\ -14 & 20 \end{bmatrix}$$

$$\begin{bmatrix} 3a - 8 & 10 \\ 3b + 8c & -10c \end{bmatrix} = \begin{bmatrix} 1 & 10 \\ -14 & 20 \end{bmatrix}$$

$$3a - 8 = 1 = 3a = 1 + 8 \Rightarrow a = \frac{3}{3} \Rightarrow a = \frac{3}{$$

Title: May 28-5:24 PM (6 of 15)

• A system of linear equations can be written as a matrix equation AX = B.

EXAMPLE 5. Express the following system of linear equations in matrix form:

Title: May 28-5:24 PM (7 of 15)

$$\begin{bmatrix} 1 & 5 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 16 \\ 11 \end{bmatrix}$$

$$X$$

$$B$$

EXAMPLE 6. Matrix A shows the number of calories from fat, protein and carbohydrates per unit of each food. Matrix B shows the number of units of each food eaten by each person. Explain the meaning of entries of BA and AB.

Title: May 28-5:25 PM (9 of 15)

EXAMPLE 7. Matrix A below gives the percentage of eligible voters in a city, classified according to party affiliation and age group:

[Age × party affiliation]
$$A = \begin{bmatrix} 0.50 & 0.30 & 0.20 \\ 0.45 & 0.38 & 0.17 \\ 0.38 & 0.52 & 0.10 \end{bmatrix} \begin{array}{c} 35 - \\ 35 - 55 \\ 55 + \end{array}$$

where rows 1, 2&3 represent Under 35, 35-55 and over 55, respectively. Columns 1, 2&3 represent Democrat, Republican and Independent, respectively. The city currently has 28,000 eligible voters under the age of 35. They have 44,000 eligible voters between 35-55 years of age, and 18,000 eligible voters over 55 years old. Find the matrix B representing the population of eligible voters. Then use it to find a matrix giving the total number of eligible voters in the city who vote Independent.

$$B = \begin{bmatrix} 28 & 600 \\ 44 & 600 \\ 18 & 600 \end{bmatrix} \begin{array}{c} 35 - \\ 35 - 55 \\ 55 + \\ \end{array}$$

$$\begin{bmatrix} 3 \times 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 \times 1 \end{bmatrix}$$

BA undefined because [3×1] [3×3] impossible

Use calculator $A^TB = \begin{bmatrix} 40640 \\ 34980 \\ \hline 14880 \end{bmatrix}$ The voters

14880 eligible voters who vote Independent

Title: May 28-5:27 PM (10 of 15)

2.6: The Inverse of a Square Matrix

Let A be a square matrix of size n. A square matrix, A^{-1} , of size n, such that $AA^{-1} = I_n$ (or equivalently, $A^{-1}A = I_n$) is called an **inverse matrix**.

EXAMPLE 1. Are these matrices inverses?

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} -0.5 & 0.5 \\ 0.75 & -0.25 \end{bmatrix}$$
Check if
$$AB = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (use calculator)
Conclusion
$$A = B^{-1} \quad \text{and} \quad B = A^{-1}$$

Title: May 28-5:47 PM (11 of 15)

We shall use the calculator to find A^{-1} if it exists.

EXAMPLE 2. If possible, find the inverse of the following matrices and express it with exa values (fractions).

(a)
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ -4 & -2 & 7 \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 0 & 1 & 3 \\ -4 & -2 & 7 \end{bmatrix}$$
 DNE, because B is not square

values (fractions).

(a)
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ -4 & -2 & 7 \end{bmatrix}$$
.

(b) $B = \begin{bmatrix} 0 & 1 & 3 \\ -4 & -2 & 7 \end{bmatrix}$ DNE, because B is not square

(c) $C = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & 1 & 3 & 0 \\ -4 & -2 & 7 & 0 \\ 1 & 2 & -1 & 1 \end{bmatrix}$. Not possible, because

(c) $C = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & 1 & 3 & 0 \\ -4 & -2 & 7 & 0 \\ 1 & 2 & -1 & 1 \end{bmatrix}$.

C is singular

DEFINITION 3. A matrix that does NOT have an inverse is called singular.

Title: May 28-5:29 PM (12 of 15)

EXAMPLE 4. Solve the matrix equation for X. Assume all matrices are square and all inverses are possible.

(a)
$$XA - 4B = D$$

 $XAA = (D + 4B)A$
 $XI = (D + 4B)A$
 $X = (D + 4B)A$

(b)
$$X + AX = B$$

$$I \times + A \times = B$$

$$X = (I + A)^{-1}B$$

$$X = (I + A)^{-1}B$$

$$X = (I + A)^{-1}B$$

Title: May 28-5:30 PM (13 of 15)

Ax = B

EXAMPLE 5. Suppose we have the following system of linear equations:

$$2x + y + 2z = -1
3x + 2y + z = 2
2x + y + z = 1$$

(a) write a matrix equation that is equivalent to the system of linear equations.

$$\begin{bmatrix} 2 & 1 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

(b) solve the system of equations by using the inverse of the coefficient matrix.

A
$$X = B$$

A⁻¹AX = A⁻¹B

Use calculator

A=> [3x3]

B -> [3x1]

$$X = \begin{bmatrix} 2 \\ -1 \\ -2 \end{bmatrix}$$

OR

$$x = 2 \\ y = -1 \\ z = -2$$

Title: May 28-5:30 PM (14 of 15)

EXAMPLE 6. Solve the following system of linear equations:

EXAMPLE 6. Solve the following system of linear equations:

$$2x + y + 2z = -1
3x + 2y + z = 2
x + 3z = -4$$

$$\begin{vmatrix}
2 & 1 & 2 \\
3 & 2 & 1
\end{vmatrix}$$

$$\begin{vmatrix}
1 & 0 & 3
\end{vmatrix}$$

$$\begin{vmatrix}
X \\
3
\end{vmatrix}$$

$$\begin{vmatrix}
X \\
4
\end{vmatrix}$$

$$\begin{vmatrix}
X \\
3
\end{vmatrix}$$

$$\begin{vmatrix}
X \\
4
\end{vmatrix}$$

Title: May 28-5:31 PM (15 of 15)