3.1: Graphing Systems of Linear Inequalities in Two Variables

Definition. The Feasible Region(FR) (or the solution set) for a system of inequalities are all the points (x, y) satisfying all of the inequalities at the same time.

The feasible region is usually illustrated graphically with the $x y$-plane.
EXAMPLE 1. Sketch the feasible region for these inequalities:
(a) $x>4$

Procedure for graphing a linear inequality:

1. Replace the inequality by an equal sign, and graph it as a solid line if the original inequality is \geq or \leq. Otherwise, graph it as a dashed/dotted line (for $>,<$).
2. Choose a test point not on the boundary line and substitute it into the inequality.
3. If the inequality is satisfied, shade the half-plane containing the test point. Otherwise, shade the other half-plane. The shaded region, including the boundary solid line, is the solution set.

EXAMPLE 2. Find the graphical solution of the inequality $3 x-5 y<15$.

Note: When you graph a feasible region, reverse shading is recommended, as the solution set will be the clean region and easier to see.

EXAMPLE 3. Determine the feasible region for this system of inequalities:
(a) $x-y \geq 0$
$x-y \leq 4$
$x \geq 0$
$y \geq 0$

y	
0	

(b) $x-y \leq 0$
$x-y \geq 4$
$x \geq 0$
$y \geq 0$

EXAMPLE 4. Determine the feasible region for this system of inequalities:
$4 x-3 y \leq 12$
$5 x+2 y \leq 10$
$x \geq 0$
$y \geq 0$

Definition. A solution set of a system of linear inequalities is bounded if it can be enclosed by a circle. Otherwise, it is unbounded.

Definition. The intersection of two boundary lines (if possible), is called a corner point of a feasible region provided that this point is part of the feasible region.

EXAMPLE 5. Find the corner points for Example 4.

EXAMPLE 6. Given:

$$
\begin{gathered}
12 x-11 y \leq 18 \\
6 x+7 y \leq 84 \\
6 x-7 y \leq 28 \\
x \geq 0, y \geq 0 .
\end{gathered}
$$

(a) Determine the feasible region for this system of inequalities.

(b) Find all corner points.
(c) Determine if the feasible region is bounded.

EXAMPLE 7. Given:

$$
\begin{gathered}
x-2 y \leq-2 \\
x-y \geq-6 \\
x+2 y \geq 6 \\
x+2 y \geq-14 \\
x \geq 0, y \geq 0
\end{gathered}
$$

(a) Determine the feasible region for this system of inequalities.

(b) Find all corner points.
(c) Determine if the feasible region is bounded.

