6.1: Sets and Set Operations

- Set Terminology and Notation

DEFINITIONS:
Set is well-defined collection of objects.
Elements are objects or members of the set.

Roster notation:

$A=\{a, b, c, d, e\}$ Read: Set A with elements a, b, c, d, e.
$B=\{a, b, c, \ldots, z\}$ Read: Set B with elements being the letters of the alphabet.

Set-builder notation:

$B=\{x \mid x$ is a letter of the English alphabet $\}$
$C=\{x \mid x$ is a student in this classroom $\}$
If a is an element of a set A, we write $a \in A$ that read " a belong to A." However, if a does not belong to A, we write $a \notin A$.

Two sets, A and B , are equal, written $A=B$, if and only if they have exactly the same elements. (NOTE: they do not have to be in the same order!). If every element in set A is also an element in set B, then A is a subset of B, written $A \subseteq B$.. If $A \subseteq B$, but $A \neq B$, then A is a proper subset of B, written $A \subset B$.

EXAMPLE 1. Given
$A=\{a, e, i, o, u\}$
$B=\{u, i, e, a, o\}$. Then
$C=\{a, e, i, o\}$
$D=\{e, i, o, a\}$
The empty set is the set that doesn't have any elements, denoted by \emptyset or $\}$. The universal set is the set that contains all of the elements for a problem, denoted by U.

EXAMPLE 2. Give all the subsets for these sets.
(a) $A=\{0,1\}$
(b) $X=\{a, b, y\}$

EXAMPLE 3. Given $A=\{0,1,2, \ldots, 8\}, B=\{1,3,5,7\}, C=\{3,5,1,7\}$, and $D=\{5,3,1\}$, $E=\emptyset$ then which of the following are TRUE?
(a) $B=C$
(b) $B \subseteq C$
(c) $B \subset C$
$(\mathbf{d}) C \subseteq B$
(e) $D \subset B$
$(\mathbf{f}) D \subseteq B$
$(\mathrm{g}) B \subset D$
(h) $8 \in A$
(i) $\{4,6\} \subset A$
(j) $1,5 \subset A$
(k) $9 \notin C$
(l) $D \subseteq D$
$(\mathbf{m}) \emptyset=0$
$(\mathbf{n}) 0 \in E$
(o) $A \in A$

VENN DIAGRAMS - a visual representation of sets (the universal set U is represented by a rectangle, and subsets of U are represented by regions lying inside the rectangle).

EXAMPLE 4. Use Venn diagrams to illustrate the following statements:
(a) $A=B$
(b) $A \subset B$
U

(c) A and B are not subsets of each other.

- OPERATIONS OF SETS

Let A and B be sets. The union of A and B, written $A \cup B$, is the set of all elements that belong to either A or B or both. Symbolically:

$$
A \cup B=\{x \mid x \in A \text { or } x \in B \text { or both }\} .
$$

Let A and B be sets. The intersection of A and B, written $A \cap B$, is the set of all elements in common with A and B. Symbolically:

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\} .
$$

\square

If U is a universal set and A is a subset in U, then the set of all elements in U that are NOT in A is called the complement of A, denoted A^{c}. Symbolically:

$$
A^{c}=\{x \mid x \in U, x \notin A\}
$$

EXAMPLE 5. Shade the Venn diagrams below to represent the following sets
(a) $A \cup B^{c}$

(b) $A^{c} \cap B$

(c) $(A \cap B) \cup C$

(d) $(A \cup B)^{c} \cap C$

EXAMPLE 6. Use these sets to find the following: $U=\{0,1,2, \ldots, 9,10\}, A=\{0,2,4,6,8,10\}$, $B=\{1,3,5,7,9\}, C=\{0,3,4,5,7\}, D=\{4,5,6,7,8,9,10\}, E=\{0,6,7,9\}, F=\{1,3,8,9\}$
(a) $B \cup E$
(b) $A \cup B$
(c) F^{c}
(d) A^{c}
(e) $(A \cap C) \cup E^{c}$
(f) $(D \cup E)^{c} \cap(C \cup F)$

EXAMPLE 7. Let U denote the set of all students at Texas AछM. Let
$A=\{x \in U \mid x$ lives in College Station $\}$,
$B=\{x \in U \mid x$ lives in Bryan $\}$,
$S=\{x \in U \mid x$ is a sophomore $\}$.
Write the set (using the set notation of \cup, \cap, and ${ }^{c}$) that represents each of the given statements:

1. The sophomores that do not live in College Station .
2. The sophomores that live in Bryan or College Station.
