6.1: Sets and Set Operations

• Set Terminology and Notation

DEFINITIONS:

Set is well-defined collection of objects.

Elements are objects or members of the set.

Roster notation:

 $A = \{a, b, c, d, e\}$ Read: Set A with elements a, b, c, d, e.

 $B = \{a, b, c, ..., z\}$ Read: Set B with elements being the letters of the alphabet.

Set-builder notation:

 $B = \{x | x \text{ is a letter of the English alphabet}\}\$

 $C = \{x | x \text{ is a student in this classroom}\}\$

If a is an element of a set A, we write $a \in A$ that read "a belong to A." However, if a does not belong to A, we write $a \notin A$.

Two sets, A and B, are **equal**, written A = B, if and only if they have exactly the same elements. (NOTE: they do not have to be in the same order!). If every element in set A is also an element in set B, then A is a subset of B, written $A \subseteq B$. If $A \subseteq B$, but $A \neq B$, then A is a **proper** subset of B, written $A \subset B$.

EXAMPLE 1. Given $A = \{a, e, i, o, u\}$ $B = \{u, i, e, a, o\}$ $C = \{a, e, i, o\}$ $D = \{e, i, o, a\}$. Then

The **empty set** is the set that doesn't have any elements, denoted by \emptyset or $\{\}$. The **universal** set is the set that contains all of the elements for a problem, denoted by U.

EXAMPLE 2. Give all the subsets for these sets. (a) $A = \{0, 1\}$ (b) $X = \{a, b, y\}$

EXAMPLE 3. Given $A = \{0, 1, 2, \dots, 8\}$, $B = \{1, 3, 5, 7\}$, $C = \{3, 5, 1, 7\}$, and $D = \{5, 3, 1\}$, $E = \emptyset$ then which of the following are TRUE?

 $(\mathbf{a})B = C$ $(\mathbf{b})B \subseteq C$ $(\mathbf{c})B \subset C$ $(\mathbf{d})C \subseteq B$ $(\mathbf{e})D \subset B$ $(\mathbf{f})D \subseteq B$ $(\mathbf{g})B \subset D$ $(\mathbf{h})8 \in A$ $(\mathbf{i}) \{4,6\} \subset A$ $(\mathbf{j})1, 5 \subset A$

 $(\mathbf{k})9 \notin C \qquad (\mathbf{l})D \subseteq D \qquad (\mathbf{m})\emptyset = 0 \qquad (\mathbf{n})0 \in E \qquad (\mathbf{o})A \in A$

VENN DIAGRAMS - a visual representation of sets (the universal set U is represented by a rectangle, and subsets of U are represented by regions lying inside the rectangle).

(c) A and B are not subsets of each other.

• OPERATIONS OF SETS

Let A and B be sets. The **union** of A and B, written $A \cup B$, is the set of all elements that belong to either A or B or both. Symbolically:

$$A \cup B = \{x | x \in A \text{ or } x \in B \text{ or both}\}.$$

.

Let A and B be sets. The **intersection** of A and B, written $A \cap B$, is the set of all elements in common with A and B. Symbolically:

$$A \cap B = \{x | x \in A \text{ and } x \in B\}.$$

If U is a universal set and A is a subset in U, then the set of all elements in U that are NOT in A is called the **complement** of A, denoted A^c . Symbolically:

EXAMPLE 5. Shade the Venn diagrams below to represent the following sets

EXAMPLE 6. Use these sets to find the following: $U = \{0, 1, 2, ..., 9, 10\}, A = \{0, 2, 4, 6, 8, 10\}, B = \{1, 3, 5, 7, 9\}, C = \{0, 3, 4, 5, 7\}, D = \{4, 5, 6, 7, 8, 9, 10\}, E = \{0, 6, 7, 9\}, F = \{1, 3, 8, 9\}$ (a) $B \cup E$

- (b) $A \cup B$
- (c) F^c
- (d) A^c
- (e) $(A \cap C) \cup E^c$
- (f) $(D \cup E)^c \cap (C \cup F)$

EXAMPLE 7. Let U denote the set of all students at Texas A&M. Let $A = \{x \in U | x \text{ lives in College Station}\},\$ $B = \{x \in U | x \text{ lives in Bryan}\},\$ $S = \{x \in U | x \text{ is a sophomore}\}.$ Write the set (using the set notation of \cup, \cap , and ^c) that represents each of the given statements:

1. The sophomores that do not live in College Station.

2. The sophomores that live in Bryan or College Station.