6.4: Permutation and Combinations

EXAMPLE 1. How many ways can you arrange 10 books on a shelf together?

Given a set of distinct objects, a permutation of a set is an arrangement of these objects in a definite order. Therefore, the number of permutations of n distinct objects taken n at a time is $n!$. DEFINITION 2. The number of permutations, $P(n, r)$, of n distinct items of which r objects are chosen to be placed in an ordered setting (i.e. row, list,...) is given by

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

On your calculator: $\mathrm{MATH} \rightarrow \mathrm{PRB} \rightarrow \# 2 \mathrm{nPr}$.
EXAMPLE 3. Compute

$$
P(n, n)=\quad P(n, 1)=\quad P(7,4)=
$$

EXAMPLE 4. Find the number of ways a chairman, a vice-chairman, and a secretary can be chosen from a committee of eleven members.

DEFINITION 5. The number of combinations, $C(n, r)$, of n distinct items of which r objects are chosen to be placed in an unordered setting is given by

$$
C(n, r)=\frac{n!}{(n-r)!r!}, \quad \text { where } r \leq n
$$

On your calculator: MATH $\rightarrow \mathrm{PRB} \rightarrow \# 3 \mathrm{nCr}$.
EXAMPLE 6. A subcommittee of three members is to be selected from a committee of eleven members. Determine the number of ways this can be done.

EXAMPLE 7. How many ways can 2 subcommittees be formed where one has 4 people and the other has 3 people from a committee of eleven members.

EXAMPLE 8. (a) How many different ways can 4 books be selected from a pile of 10 different books and arranged on a shelf?
(b) How many ways can you select 4 books to read next week from a pile of 10 different books?

EXAMPLE 9. Six friends go to the movies and all sit in the first row, which has 10 seats available. How many different seating arrangements of these six friends are possible in these 10 seats?

EXAMPLE 10. Lauren has a bucket of sidewalk chalk. In the bucket there are 2 green, 8 red, 2 yellow, 4 blue and 4 pieces of white chalk. If she randomly pulls out 6 pieces of chalk, in how many ways can she pull out exactly 2 red chalks and 1 white chalk?

EXAMPLE 11. A box contains 4 lime, 8 cherry and 10 blue raspberry Jolly Ranchers. If Jessica randomly selects 7 Jolly Ranchers from the box, in how many ways could she select exactly 5 of the same color?

EXAMPLE 12. A box contains 800 DVD's of which 50 are scratched. In how many ways can you randomly select 25 DVD's such that at least 2 are scratched?

EXAMPLE 13. Six cards are randomly selected from a standard deck of 52 playing cards. How many 6-card hands are possible
(a) if there are no restrictions?
(b) that have exactly 4 hearts or exactly 3 spades cards?

Distinct rearrangements (or, permutations of n objects, Not All Distinct):
EXAMPLE 14. How many distinguishable ways can you rearrange the letters in the word BEAR? What about the word BEER?
$B E A R$ BERA BARE BAER BREA BRAE

BEAR: $\begin{array}{llllll}E B A R & E B R A & E A B R & E A R B & E R B A & E R A B \\ A B R E & A B E R & A R B E & A R E B & A E B R & A E R B\end{array}$
$R B E A \quad R B A E \quad R E B A \quad R E A B \quad R A B E \quad R A E B$
BEER BERE BERE BEER BREE BREE
$E B E R \quad E B R E \quad E E B R \quad E E R B \quad E R B E \quad E R E B$
EBRE EBER ERBE EREB EEBR EERB
RBEE RBEE REBE REEB REBE REEB

- If we have n objects in which n_{1} of the objects are alike (same), then the number of permutations of these n objects taken n at a time would be $\frac{n!}{n_{1}!}$.

EXAMPLE 15. How many different arrangements can be made from the letters of MASSACHUSETTS?

Appendix: Standard Deck of Cards: A deck of cards has 4 suits: diamonds, hearts, clubs, and spades. The suits of diamonds and hearts are both red and the suits of clubs and spades are both black. Each suit has the following denominations: Ace, 2, 3, 4, 5, 6, 7, 8, 9,10, Jack, Queen, and King. The Jacks, Queens and Kings are also called face cards.

