8.1: Distributions of Random Variables

A random variable is a rule that assigns a number to each outcome of a sample space.
EXAMPLE 1. Let X be the number of girls in a three-child family.

$$
S=\{b b b, \mathrm{bbg}, \mathrm{bgb}, \mathrm{gbb}, \mathrm{ggb}, \mathrm{gbg}, \mathrm{bgg}, \operatorname{ggg}\}
$$

(a) What are the values of the random variable X ?
(c) Give the probability distribution for X.

TYPES OF RANDOM VARIABLES:

- Finite Discrete Random Variable that assumes only a finite number of values. (You can write ALL possible values of the random variable that stops.)
- Infinite Discrete Random Variable takes on infinitely many values, which may be arranged in a sequence. (You can write all possible values of a random variable in a list of numbers that has a pattern and goes on forever.)
- Continuous Random Variable may assume an interval of real numbers.

EXAMPLE 2. Classify these random variables. Give the values of the random variable (domain).
(a) Three cards are drawn from a standard deck of 52. Let X be the random variable denoting the number of diamonds that are drawn. What is the domain of X ?
(b) A bag contains 3 red, 6 blue, and 4 white marbles. Marbles are drawn one at a time without replacement until a red one is drawn. Let X be the random variable denoting the number of marbles drawn in one trial of this experiment.
(c) Let X be the number of times you roll a dice until a 4 appears.
(d) Let X denote the number of minutes a person waits (in one particular day) in line to pull football tickets.

EXAMPLE 3. Two cards are drawn from a well-shuffled deck of 52 playing cards. Let X denote the number of aces drawn. Find $P(X=2)$.

DEFINITION 4. A histogram is a way to present the probability distribution of a discrete random variable.

EXAMPLE 5. The probability distribution of the random variable X is shown:

x	1	2	3	4	5	6
$P(X=x)$	0.1	0.2	0.3	0.2	0.1	0.1

(a) Draw the histogram for the random variable X.
(b) Compute $P(X<3)$
(c) $P(X \leq 4)$
(d) $P(1<X \leq 6)$

EXAMPLE 6. The following histogram (your teacher just drew :)) is only missing the rectangle at $x=6$.
(a) Find $P(X=6)$
(b) Give the probability distribution for X.
(c) Find $P(2 \leq X<5)$

EXAMPLE 7. The rates paid by thirty financial institutions on a certain day for money-market deposit accounts are shown in the accompanying table:

Rate, \%	6	6.25	6.55	6.56	6.58	6.60	6.65	6.85
Institutions	1	7	7	1	1	8	3	2

Let the random variable X denote the interest paid by a randomly chosen financial institution on its money-market deposit accounts. Find the probability distribution associated with these data.

