## 8.1: Distributions of Random Variables

A random variable is a rule that assigns a number to each outcome of a sample space

 ${\it EXAMPLE~1.~Let~X~be~the~number~of~girls~in~a~three-child~family.}$ 

 $S = \{bbb, bbg, bgb, gbb, ggb, gbg, bgg, ggg\}$ 



(a) What are the values of the random variable X?

 $X = \{0, 1, 2, 3\}$ domain of X

(c) Give the probability distribution for X.

|   | XEX value from the domain of X |     |     |     |     |    |  |  |  |  |  |
|---|--------------------------------|-----|-----|-----|-----|----|--|--|--|--|--|
|   | x &                            | 0   | 1   | 2   | 3   |    |  |  |  |  |  |
| 1 | frequency                      | -   | 3   | 3   | 1   | =8 |  |  |  |  |  |
|   | P(X=x)                         | 1/8 | 3/8 | 3/8 | 1/3 |    |  |  |  |  |  |

TYPES OF RANDOM VARIABLES:

• Finite Discrete Random Variable that assumes only a finite number of values. (You can write ALL possible values of the random variable that stops.)

$$X = \{ 0, 2, 4, 8, 15 \}$$
 finite set

• Infinite Discrete Random Variable takes on infinitely many values, which may be arranged in a sequence. (You can write all possible values of a random variable in a list of numbers that has a pattern and goes on forever.)

Continuous Random Variable may assume an interval of real numbers.

There is nothing like an exact observation in the continuous variable.

$$X = \{X \mid \underbrace{3 \text{ sx} \leq 14.7}_{\text{domain}}\}$$
EXAMPLE 2. Classify these random variables. Give the values of the random variable (domain).

(a) Three cards are drawn from a standard deck of 52. Let X be the random variable denoting the  $number\ of\ diamonds\ that\ are\ drawn.\ What\ is\ the\ domain\ of\ X?$ 

$$\chi = \{0, 1, 2, 3\}$$
 finite discrete

(b) A bag contains 3 red, 6 blue, and 4 white marbles. Marbles are drawn one at a time without  $replacement\ until\ a\ red\ one\ is\ drawn.\ Let\ \underline{X}\ \underline{be\ the\ random\ variable\ denoting\ the\ number\ of}$ marbles drawn in one trial of this experiment.

$$X = \left\{ \begin{array}{c} 1, 2, \dots, 11 \\ \text{domain} \end{array} \right\}$$
(c) Let X be the number of times you roll a dice until a 4 appears.

(d) Let X denote the number of minutes a person waits (in one particular day) in line to pull football tickets. 
$$X = \{x \mid \underbrace{0 \le X \le 24.60}_{\text{domain}}\}$$
 Continuous variable.

EXAMPLE 3. Two cards are drawn from a well-shuffled deck of 52 playing cards. Let  $\underline{X}$  denote



1

DEFINITION 4. A histogram is a way to present the probability distribution of a discrete random variable.



EXAMPLE 5. The probability distribution of the random variable X is shown:

| x      | 1   | 2   | 3   | 4   | 5   | 6   |
|--------|-----|-----|-----|-----|-----|-----|
| P(X=x) | 0.1 | 0.2 | 0.3 | 0.2 | 0.1 | 0.1 |

(a) Draw the histogram for the random variable X.



(c) 
$$P(X \le 4) = 0.1 + 0.2 + 0.3 + 0.2 = 0.8$$

(d) 
$$P(1 < X \le 6) = 1 - P(X = 1) = 1 - 0.1 = 0.9$$

EXAMPLE 6. The following histogram (your teacher just drew :)) is only missing the rectangle at x = 6.



- (a) Find P(X = 6) = 1 0.2 0.4 0.1 0.0 0.1 = 0.2
- (b) Give the probability distribution for X.

| a      | ı   | 2   | 3   | 4 | 5           | 6   |     |  |
|--------|-----|-----|-----|---|-------------|-----|-----|--|
| P(x=x) | 0.2 | 6.9 | 0.1 | 0 | <b>9.</b> 1 | 0.2 | = 1 |  |
|        |     |     |     |   |             |     |     |  |

(c) Find 
$$P(2 \le X < 5) = 0.9 + 0.1 + 0 = 0.5$$

EXAMPLE 7. The rates paid by thirty financial institutions on a certain day for money-market deposit accounts are shown in the accompanying table:

| X     | Rate, % 🗶    | 6              | 6.25 | 6.55 | 6.56 | 6.58           | 6.60 | 6.65 | 6.85 |   |    |
|-------|--------------|----------------|------|------|------|----------------|------|------|------|---|----|
| Eard. | Institutions | 1              | 7    | 7    | 1    | 1              | 8    | 3    | 2    | = | 30 |
|       | b(x=x)       | <u>1</u><br>30 | 30   | 7/30 | 1 30 | <u>1</u><br>30 | 30   | 3/30 | 2/30 |   |    |

Let the random variable X denote the interest paid by a randomly chosen financial institution on its money-market deposit accounts. Find the probability distribution associated with these data.