8.3: Variance and Standard Deviation

EXAMPLE 1. Find the mean and median of these data sets.

(a) 50, 50, 50, 110, 110, 110

$$\bar{X} = \frac{3.50 + 3.110}{6} = 80$$
median $\frac{50 + 110}{2} = 80$

(b) 70,75,75,8085,85,90

$$\bar{x} = 80$$
 median = 80

Variance of the random variable X, denoted Var(x), measures the dispersion (or spread) of the data.

$$Var(x) = \sigma^2$$

Standard Deviation, denoted σ , is another measure of dispersion (or spread) of a probability distribution about its mean:

Finding expected value and standard deviation using the calculator::

1. Enter the x-values into L1 and the corresponding probabilities into L2 (STAT \rightarrow 1:Edit).

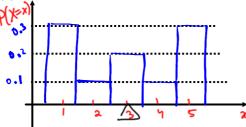
- 2. On the homescreen type 1-Var Stats L1, L2 (STAT \rightarrow CALC \rightarrow 1:1-Var Stats)
- 3. \bar{x} is the expected value
- 4. σx is the standard deviation
- 5. To find variance, you would need to recall that $Var(X) = \sigma^2$.

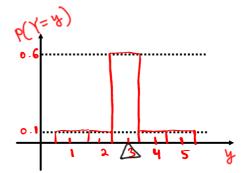
EXAMPLE 2. The random variables X and Y have the following probability distributions:

\boldsymbol{x}	P(X=x)
1	0.3
2	0.1
3	0.2
4	0.1
5	0.3

y	P(Y=y)
1	0.1
2	0.1
3	0.6
4	
5	0.1

(a) Draw the histograms for X and Y.





(b) Find the mean, variance and standard deviation of X.

$$\bar{x} = 3$$
, $G_{\pi} = 1.6 \Rightarrow Var(x) = 2.56$

(c) Find the mean, variance and standard deviation of Y.

mean
$$y=3$$
, $6y=1=) Var(Y)=1^2=1$

EXAMPLE 3. In a class of 100 students, define \underline{X} as the random variable whose value represents the students grade in Math 141, A = 4, B = 3, etc. Compute the mean, and standard deviation.

Scenario	A	B	C	D	F'	1
x	4	3	2	1	0	LI
freq. of occurrence	15	29	40	12	4	L2

$$\bar{X} \approx 2.39$$
 $6 \approx 1$

EXAMPLE 4. Amy is considering investing \$5,000 in 2 mutual funds. The anticipated return from price appreciation and dividends (in hundred of dollars) are described by the following probability distributions:

MUTUAL FUND A

MOTOAL FOND A			
Returns	Probability		
-2	0.25		
4	0.45		
5	0.3		
LI	L2		

MUTUAL FUND B

Returns	Probability
-2	0.2
3	0.4
4	0.4
LI	L 2

(a) Find the mean and variance with the returns for each fund.

Fund A:
$$X_A = 2.8$$

 $G_A \approx 2.8 = Var(X_A) \approx 2.8^2 = 7.84$

Fund B:
$$x_B = 2.4$$

 $\sigma_B = 2.24 \Rightarrow Var(x_B) = 2.24 = 5.02$

(b) Which investment would provide Amy with the higher expected return?

Fund A, because
$$\bar{x}_A > \bar{\bar{x}}_B$$

(c) In which investment would the element of risk be less?

For fund B) because the probability distribution for B has the smallest variance $Var(X_{A}) > Var(X_{B})$