\qquad FIRST NAME \qquad Section \# \qquad

Due Tuesday $6 / 12$ at the beginning of class.

- If turned in later than 10 minutes into class, 5 points off. No papers will be accepted after class.
- If you turn it in to my office (Blocker 629F), place it in my mailbox (Blocker 603) or e-mail a PDF-version to me, make sure you do it before 9:45am, Tuesday 6/12/2012.
- You MUST show ALL your work to get full credit. Just writing the answers down is not enough.
- Your work must be neat, easy to follow. BOX YOUR FINAL ANSWERS.
- You may use notes and textbook, but not the help of anything else.

On my honor, as an Aggie, I certify that the solution submitted by me is my own work. I had neither given nor received unauthorized aid on this work.

Signature: \qquad

1. Set up but do not solve the following linear programming problem (clearly define the variables).

Food A contains 5 units of vitamin $A, 6$ units of vitamin B and 3 mg of fat per serving. Food B contains 6 units of vitamin $A, 3$ units of vitamin B and 4 mg of fat per serving. If a dinner consists of these two foods is to have at least 20 units of vitamin A and at least 9 units of vitamin B, how many servings of each should be used in order to minimize the total milligrams of fat?
2. Find the minimum values of $C=3 x-y$ on the feasible region which is bounded and has the following corner points $(3,16),(16,24),(28,8),(8,2)$.
3. Determine graphically the feasible region $(F R)$ for the following system of inequalities and list all corner points. Also determine if the feasible region is bounded.
(a) $\begin{aligned} 2 x+3 y & \geq 15 \\ 2 x+y & \geq 8 \\ x & \geq 0 \\ y & \geq 2\end{aligned}$
(b) $\begin{aligned} x+3 y & \leq 15 \\ 2 x+y & \leq 10 \\ x & \leq 4 \\ x \geq 0 & , y \geq 0\end{aligned}$

