Section 1.1: Vectors

Quantities that we measure that have magnitude but not direction are called scalars.
DEFINITION 1. A vector is a quantity that has both magnitude and direction. A 2-dimensional vector is an ordered pair $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$. The numbers a_{1} and a_{2} are called the components of the vector \mathbf{a}.

Typical notation to designate a vector is a boldfaced character or a character with and arrow on it (i.e. \mathbf{a} or \vec{a}).

DEFINITION 2. Given the points $A\left(a_{1}, a_{2}\right)$ and $B\left(b_{1}, b_{2}\right)$, the vector a with representation $\overrightarrow{A B}$ is

$$
\overrightarrow{A B}=\left\langle b_{1}-a_{1}, b_{2}-a_{2}\right\rangle
$$

The point A here is initial point and B is terminal one.

A vector with the initial point located at the origin is called the position vector (or we say that a vector is in standard position).

Vectors are equal if they have the same length and direction (same slope).
EXAMPLE 3. Graph the vector with initial point $A(1,-2)$ and terminal point $B(2,1)$. Find the components of $\overrightarrow{A B}$ and $\overrightarrow{B A}$.

Vector operations

- Scalar Multiplication: If c is a scalar and $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$, then

$$
c \mathbf{a}=c\left\langle a_{1}, a_{2}\right\rangle=\left\langle c a_{1}, c a_{2}\right\rangle
$$

DEFINITION 4. Two vectors \mathbf{a} and \mathbf{b} are called parallel if $\mathbf{b}=$ ca with some scalar c.

If $c>0$ then a and $c a$ have the same direction, if $c<0$ then a and $c a$ have the opposite direction.

- Vector addition: If $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}\right\rangle$ then

$$
\mathbf{a}+\mathbf{b}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}\right\rangle
$$

Triangle Law

Parallelogram Law

$$
\mathbf{a}+\mathbf{b} \text { is called the resultant vector }
$$

EXAMPLE 5. Let $\mathbf{a}=\langle-1,2\rangle$ and $\mathbf{b}=\langle 2.1,-0.5\rangle$. Then $3 \mathbf{a}+2 \mathbf{b}=$

The magnitude or length of a vector $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ is denoted by $|\mathbf{a}|$,

$$
|\mathbf{a}|=
$$

EXAMPLE 6. Find: $|\langle 3,-8\rangle|,\left|\left\langle\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle\right|,|\mathbf{0}|$

A unit vector is a vector with length one. Any vector can be made into a unit vector by dividing it by its length. So, a unit vector in the direction of \mathbf{a} is

$$
\mathbf{u}=\frac{\mathbf{a}}{|\mathbf{a}|} .
$$

Any vector a can be fully represented by providing its length, $|\mathbf{a}|$ and a unit vector \mathbf{u} in its direction:

$$
\mathbf{a}=|\mathbf{a}| \mathbf{u}
$$

EXAMPLE 7. Given $\mathbf{a}=\langle 2,-1\rangle$. Find
(a) a unit vector that has the same direction as a;
(b) a vector \mathbf{b} in the direction opposite to \mathbf{a} s.t $|\mathbf{b}|=7$.

The standard basis vectors are given by the unit vectors $\mathbf{i}=\langle 1,0\rangle \quad$ and $\quad \mathbf{j}=\langle 0,1\rangle$ along the x and y directions, respectively. Using the basis vectors, one can represent any vector $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ as

$$
\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j} .
$$

EXAMPLE 8. Given $\mathbf{a}=2 \mathbf{i}-\mathbf{j}, \mathbf{b}=\langle 5,-2\rangle$. Find a scalars s and t such that $s \mathbf{a}+t \mathbf{b}=-4 \mathbf{j}$.

Applications: Quantities such as force, displacement or velocity that have direction as well as magnitude are represented by vectors.

EXAMPLE 9. Ben walks due west on the deck of a ship at 5 mph . The ship is moving north at a speed of 25 mph . Find the direction and speed of Ben relative to the surface of the water.

EXAMPLE 10. Two forces F_{1} and F_{2} with magnitudes 14 pounds and 12 pounds act on an object at a point P as shown. Find the resultant force as well as it's magnitude and direction.

EXAMPLE 11. An 60 pound weight hangs from two wires as shown. Find the tensions (forces) in both wires and their magnitudes.

EXAMPLE 12. An airplane, flying due east at an airspeed of 450 mph , encounters a $50-\mathrm{mph}$ wind acting in the direction of $E 60^{\circ} N\left(60^{\circ}\right.$ North of East). The airplane holds its compass heading due east but, because of the wind, acquires a new ground speed (i.e. the magnitude of the resultant) and direction. What are they?

