Section 2.3: Calculating limits using the limits laws

LIMIT LAWS Suppose that c is a constant and the limits

$$\lim_{x \to a} f(x) \qquad \text{and} \qquad \lim_{x \to a} g(x)$$

exist. Then

- 1. $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$
- 2. $\lim_{x \to a} \left[cf(x) \right] = c \lim_{x \to a} f(x)$
- 3. $\lim_{x \to a} \left[f(x)g(x) \right] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- 4. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{if} \quad \lim_{x \to a} g(x) \neq 0$
- 5. $\lim_{x \to a} c = c$
- 6. $\lim_{x \to a} x = a$
- 7. $\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$, where *n* is a positive integer.
- 8. $\lim_{x \to a} x^n = a^n$, where *n* is a positive integer.
- 9. $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ where *n* is a positive integer and if *n* is even, then we assume that $\lim_{x \to a} f(x) > 0$.
- 10. $\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{\lim_{x \to a} x}$ where *n* is a positive integer and if *n* is even, then we assume that a > 0.

REMARK 1. Note that all these properties also hold for the one-sided limits.

REMARK 2. The analogues of the laws 1-3 also hold when f and g are vector functions (the product in Law 3 should be interpreted as a dot product).

EXAMPLE 3. Compute the limit: $\lim_{x \to -1} (7x^5 + 2x^3 - 8x^2 + 3) =$

REMARK 4. If we had defined $f(x) = 7x^5 + 2x^3 - 8x^2 + 3$ then Example 3 would have been,

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} (7x^5 + 2x^3 - 8x^2 + 3) = 7(-1)^5 + 2(-1)^3 - 8(-1)^2 + 3 = -14 = f(-1)$$

EXAMPLE 5. Compute the limit: $\lim_{x \to -2} \frac{x^2 + x + 1}{x^3 - 10} =$

REMARK 6. The function from Example 5 also satisfies "direct substitution property":

$$\lim_{x \to a} f(x) = f(a).$$

Later we will say that such functions are *continuous*. Note that in both examples it was important that a in the domain of f.

EXAMPLE 7. Compute the limit: $\lim_{x\to 3} \frac{x-3}{x^2-9}$

EXAMPLE 8. Compute the limit: $\lim_{x \to 1} \frac{x-1}{x^2 - 4x + 3}$

EXAMPLE 9. Given

$$g(x) = \begin{cases} x^2 + 4, & \text{if } x \le -1\\ 2 - 3x & \text{if } x > -1 \end{cases}$$

Compute the limits:

(a) $\lim_{x \to 4} g(x)$

(b) $\lim_{x \to -1} g(x)$

EXAMPLE 10. Evaluate these limits.

(a)
$$\lim_{x \to 4} \frac{x^{-1} - 0.25}{x - 4}$$

(b)
$$\lim_{x \to 0} \frac{(x+5)^2 - 25}{x}$$

(c)
$$\lim_{x \to -1} \frac{|x+1|}{x+1}$$

(d)
$$\lim_{x \to -1} \frac{x^2 + x}{|x + 1|}$$

(e)
$$\lim_{x \to 0^-} \left\{ \frac{1}{x} - \frac{1}{|x|} \right\}$$

(f)
$$\lim_{x \to 0} \frac{\sqrt{6-x} - \sqrt{6}}{x}$$

Conclusion from the above examples: To calculate the limit of f(x) as $x \to a$: PLUG IN x = a if a is in the domain of f. Otherwise "FACTOR" or "MULTIPLY BY CONJUGATE" and then plug in. Consider one sided limits if necessary.

Squeeze Theorem. Suppose that for all x in an interval containing a (except possibly at x = a)

$$g(x) \le f(x) \le h(x)$$

and $\lim_{x \to a} g(x) = L = \lim_{x \to a} h(x)$. Then

$$\lim_{x \to a} f(x) = L$$

Corollary. Suppose that for all x in an interval containing a (except possibly at x = a)

$$|f(x)| \le h(x)$$
 (equivalently, $-h(x) \le f(x) \le h(x)$)

and $\lim_{x \to a} h(x) = 0$. Then

$$\lim_{x \to a} f(x) = 0.$$

EXAMPLE 11. Given $3x \le f(x) \le x^3 + 2$ for $0 \le x \le 2$. Find $\lim_{x \to 1} f(x)$

EXAMPLE 12. Evaluate:

(a) $\lim_{x \to 0} x \sin \frac{1}{x}$

(b)
$$\lim_{t\to 0} (t^5) \cos^3(\frac{1}{t^2})$$

EXAMPLE 13. Is there a number c such that

$$\lim_{x \to -2} \frac{3x^2 + cx + c + 3}{x^2 + x - 2}$$

exists? If so, find the value c and the value of the limit.