4.2:Inverse Functions

DEFINITION 1. A function of domain X is said to be a one-to-one function if no two elements of X have the same image, i.e.
if $x_{1} \neq x_{2}$ then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Equivalently, if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $x_{1}=x_{2}$.
Horizontal line test:A function if one-to-one is and only if no horizontal line intersects its graph more once.

EXAMPLE 2. Are the following functions one-to-one?

$$
f(x)=x^{3}, \quad g(x)=\sqrt{x}+3, \quad h(x)=x^{2}, \quad u(x)=|x|, \quad w(x)=\sin x, \quad F(x)=-x^{2}+x+1
$$

EXAMPLE 3. Prove that $f(x)=\frac{x-3}{x+3}$ is one-to-one.

EXAMPLE 4. How we can restrict the domain of $f(x)=\sin x$ to make it one-to-one?

DEFINITION 5. Let f be a one-to-one function with domain X and range Y. Then the inverse function f^{-1} has the domain Y and range X and is defined for any y in Y by

$$
f^{-1}(y)=x \Leftrightarrow f(x)=y .
$$

REMARK 6. Reversing roles of x and y in the last formula we get:

$$
f^{-1}(x)=y \Leftrightarrow f(y)=x .
$$

REMARK 7. If $y=f(x)$ is one-to-one function with the domain X and the range Y then

$$
\text { for every } x \text { in } X \quad f^{-1}(f(x))=
$$

and
for every x in $Y \quad f\left(f^{-1}(x)\right)=$
CAUTION: $f^{-1}(x)$ does NOT mean $\frac{1}{f(x)}$.
TO FIND THE INVERSE FUNCTION OF A ONE-TO-ONE FUNCTION f :

1. Write $y=f(x)$.
2. Solve this equation for x in terms of y (if possible).
3. Interchange x and y. The resulting equation is $y=f^{-1}(x)$.

EXAMPLE 8. (cf. Example3) Find the inverse function of $f(x)=\frac{x-3}{x+3}$.

EXAMPLE 9. Given $f(x)=x^{2}+x, x \geq \frac{1}{2}$. Find the inverse function of f.

FACT: The graph of f^{-1} is obtained by reflecting the graph of f about the line $y=x$.

THEOREM 10. If f is a one-to-one differentiable function with inverse function $g=f^{-1}$ and $f^{\prime}(g(a)) \neq 0$, then the inverse function is differentiable at a and

$$
g^{\prime}(a)=\frac{1}{f^{\prime}(g(a))}
$$

Proof.

EXAMPLE 11. Suppose that g is the inverse function of f and $f(4)=5, f^{\prime}(4)=7$. Find $g^{\prime}(5)$.

EXAMPLE 12. Suppose that g is inverse of f. Find $g^{\prime}(a)$ where
(a) $f(x)=\sqrt{x^{3}+x^{2}+x+1}, a=2$
(b) $f(x)=\frac{2 x-3}{x+3}, a=\frac{1}{2}$.
(c) $f(x)=4+3 x+e^{3(x-1)}, a=8$.

