5.5: Applied Maximum and Minimum Problems

OPTIMIZATION PROBLEMS

First derivative test for absolute extrema: Suppose that c is a critical number of a continuous function f defined on an interval.

- If $f^{\prime}(x)>0$ for all $x<c$ and $f^{\prime}(x)<0$ for all $x>c$, then $f(c)$ is the absolute maximum value of f.
- If $f^{\prime}(x)<0$ for all $x<c$ and $f^{\prime}(x)>0$ for all $x>c$, then $f(c)$ is the absolute minimum value of f.

Alternatively,

- If $f^{\prime \prime}(x)<0$ for all x (so f is always concave downward) then the local maximum at c must be an absolute maximum.
- If $f^{\prime \prime}(x)>0$ for all x (so f is always concave upward) then the local minimum at c must be an absolute minimum.

EXAMPLE 1. When a producer sells x items per week, he makes a profit of

$$
p(x)=15 x-0.001 x^{2}-2000 .
$$

How many items does he need to sell to get the maximum profit?

EXAMPLE 2. A rectangular storage container with an open top is to have a volume of $10 \mathrm{~m}^{3}$. The length of its base is twice the width. Material for the base costs $\$ 10$ per squire meter. Material for the sides costs $\$ 6$ per square meter. Find the cost of materials for the cheapest such container.

EXAMPLE 3. Find the shortest distance from the parabola $y^{2}=2 x$ to the point $(2,0)$.

EXAMPLE 4. A rectangle is bounded by the x-axis and the semicircle $y=\sqrt{9-x^{2}}$. What length and width should the rectangle have so that its area is a maximum? (Equivalently,find the dimensions of the largest rectangle that can be inscribed in the semi-disk with radius 3.)

