Section 5.7: Antiderivatives

DEFINITION 1. A function F is called an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

EXAMPLE 2. (a) Is the function $F(x) = x \ln(x) - x + \sin x$ is an antiderivative of $f(x) = \ln(x) + \cos x$?

(b) Is the function $F(x) = x \ln(x) - x + \sin x + 10$ is an antiderivative of $f(x) = \ln(x) + \cos x$?

(c) What is the most general antiderivative of $f(x) = \ln(x) + \cos x$?

THEOREM 3. If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is F(x) + C, where C is an arbitrary constant.

EXAMPLE 4. Find the most general antiderivative of f = 2x.

Function	Particular antiderivative	Most general antiderivative
$k \ (k \in \mathbb{R})$	kx	kx + C
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	$\frac{x^{n+1}}{n+1} + C$
$\begin{bmatrix} \frac{1}{x} \\ e^x \end{bmatrix}$	$\ln x $	
e^x	e^x	
$\cos x$	$\sin x$	
$\sin x$	$-\cos x$	
$\sec^2 x$	$\tan x$	
$\csc^2 x$	$-\cot x$	
$\sec x \tan x$	$\sec x$	
$\csc x \cot x$	$\csc x$	
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$	
$\frac{1}{1+x^2}$	$\arctan x$	

Table of Antidifferentiation Formulas

EXAMPLE 5. Find the most general antiderivative of f where

(a)
$$f(x) = 5\sin x + 7x^6 - \sqrt[8]{x^7} + 15$$

(b)
$$f(x) = \frac{3x+8-x^2}{x^3}$$

(c)
$$f(x) = e^x + (1 - x^2)^{-1/2}$$

EXAMPLE 6. Find f(x) given that $f'(x) = 4 - 3(1 + x^2)^{-1}$, f(1) = 0.

EXAMPLE 7. Find f(x) given that $f''(x) = 3e^x + 5sinx$, f(0) = 1, f'(0) = 2.

EXAMPLE 8. A particle is moving according to acceleration a(t) = 2t + 2. Find the position, s(t), of the object at time t if we know s(0) = 1 and v(0) = -2.

EXAMPLE 9. Show that for motion in a straight line with a constant acceleration a, initial velocity v_0 , and initial displacement s_0 , the displacement after time t is

$$s(t) = \frac{1}{2}at^2 + v_0t + s_0.$$

EXAMPLE 10. A stone is thrown downward from a 450 m tall building at a speed of 5 meters per second. Derive a formula for the distance of the stone above ground level.

EXAMPLE 11. A car braked with a constant deceleration of 40 ft/s², producing skid marks measuring 160 ft before coming to a stop. How fast was the car traveling when the brakes were first applied?