6.4: The fundamental Theorem of Calculus

The fundamental Theorem of Calculus:
PART I If $f(x)$ is continuous on $[a, b]$ then $g(x)=\int_{a}^{x} f(t) \mathrm{d} t$ is continuous on $[a, b]$ and differentiable on (a, b) and $g^{\prime}(x)=f(x)$.

EXAMPLE 1. Differentiate $g(x)=\int_{-4}^{x} e^{2 t} \cos ^{2}(1-5 t) \mathrm{d} t$

EXAMPLE 2. Let $u(x)$ be a differentiable function and $f(x)$ be a continuous one. Prove that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\int_{a}^{u(x)} f(t) \mathrm{d} t\right)=f(u(x)) u^{\prime}(x)
$$

Let $u(x)$ and $v(x)$ be differentiable functions and $f(x)$ be a continuous one. Then

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\int_{v(x)}^{u(x)} f(t) \mathrm{d} t\right)=f(u(x)) u^{\prime}(x)-f(v(x)) v^{\prime}(x) .
$$

EXAMPLE 3. Differentiate $g(x)$ if
(a) $g(x)=\int_{-4}^{x^{3}} e^{2 t} \cos ^{2}(1-5 t) \mathrm{d} t$
(b) $g(x)=\int_{e^{x^{2}}}^{1} \frac{t+1}{\ln t+3} \mathrm{~d} t$
(c) $g(x)=\int_{x^{2}}^{\sin x} \frac{\cos t}{t} \mathrm{~d} t$

PART II If $f(x)$ is continuous on $[a, b]$ and $F(x)$ is any antiderivative fort $f(x)$ then

$$
\int_{a}^{b} f(x) \mathrm{d} x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a) .
$$

EXAMPLE 4. Evaluate

1. $\int_{1}^{5} \frac{1}{x^{2}} \mathrm{~d} x$
2. $\int_{-\pi / 2}^{0}(\cos x-4 \sin x) \mathrm{d} x$
3. $\int_{0}^{1}\left(u^{3}+2\right)^{2} \mathrm{~d} u$

EXAMPLE 5. Evaluate

1. $\int_{1}^{2} \frac{2 x^{5}-x+3}{x^{2}} \mathrm{~d} x$
2. $\int_{0}^{3}|3 t-5| \mathrm{d} t$

Applications of the Fundamental Theorem

If a particle is moving along a straight line then application of the Fundamental Theorem to $s^{\prime}(t)=v(t)$ yields:

$$
\int_{t_{1}}^{t_{2}} v(t) \mathrm{d} t=s\left(t_{2}\right)-s\left(t_{1}\right)=\text { displacement } .
$$

Show that

$$
\text { total distance traveled }=\int_{t_{1}}^{t_{2}}|v(t)| \mathrm{d} t .
$$

EXAMPLE 6. A particle moves along a line so that its velocity at time t is $v(t)=t^{2}-2 t-8$. Find the displacement and the distance traveled by the particle during the time period $1 \leq t \leq 6$.

