Section 1.2: The Dot Product

Let's start with two equivalent definitions of dot product.
DEFINITION 1. The dot product of two nonzero vectors \mathbf{a} and \mathbf{b} is the number

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta,
$$

where θ is the angle between the vectors \mathbf{a} and $\mathbf{b}, 0 \leq \theta \leq \pi$. If either \mathbf{a} or \mathbf{b} is $\mathbf{0}$, then we define $\mathbf{a} \cdot \mathbf{b}=0$.

DEFINITION 2. The dot product of two given vectors $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}\right\rangle$ is the number

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2} .
$$

Note that the formula from Definition 1 is often used not to compute a dot product but instead to find the angle between two vectors. Indeed, it implies:
$\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}=$

EXAMPLE 3. Given $\mathbf{a}=\langle 2,-3\rangle$ and $\mathbf{b}=\langle 3,-4\rangle$.
(a) Compute the dot product of \mathbf{a} and \mathbf{b}.
(b) Determine the angle between \mathbf{a} and \mathbf{b}.

Note that

$$
\begin{gathered}
\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2} \\
\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a} \\
\mathbf{0} \cdot \mathbf{a}=0
\end{gathered}
$$

The dot product gives us a simple way for determining if two vectors are perpendicular (or orthogonal), namely,

Two nonzero vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b}=0$. (Prove it!)

EXAMPLE 4. Determine whether the given vectors are orthogonal, parallel, or neither.
(a) $\langle 3,4\rangle,\langle-8,6\rangle$
(b) $\langle-7,-4\rangle,\langle 28,16\rangle$
(c) $\langle 1,1\rangle,\langle 2,3\rangle$

EXAMPLE 5. What is the dot product of $12 \mathbf{j}$ and 11i?

DEFINITION 6. The work done by a force \mathbf{F} in moving and object from point A to point B is given by

$$
W=\mathbf{F} \cdot \mathbf{D}
$$

where $\mathbf{D}=\overrightarrow{A B}$ is the distance the object has moved (or displacement).
EXAMPLE 7. Find the work done by a force of $50 l b$ acting in the direction $N 30^{\circ} W$ in moving an object 10 ft due west.

EXAMPLE 8. A constant force $\mathbf{F}=25 \mathbf{i}+4 \mathbf{j}$ (the magnitude of \mathbf{F} is measured in Newtons) is used to move an object from $A(1,1)$ to $B(5,6)$. Find the work done if the distance is measured in meters

DEFINITION 9. The orthogonal compliment of $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ is $\mathbf{a}^{\perp}=\left\langle-a_{2}, a_{1}\right\rangle$.
Note that $|\mathbf{a}|=\left|\mathbf{a}^{\perp}\right|$ and $\mathbf{a} \cdot \mathbf{a}^{\perp}=$
EXAMPLE 10. Given $\langle 4,-2\rangle,\langle 2,-1\rangle,\langle-2,1\rangle$ and $\mathbf{a}=\langle 1,2\rangle$. Which of these vectors is

- orthogonal to a?
- the orthogonal compliment of a?

Scalar and vector projections: For given two vectors \mathbf{a} and \mathbf{b} we determine the projection of \mathbf{b} onto a.

- The vector projection of \mathbf{b} onto \mathbf{a} is denotes by $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ and can be found by the formula

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}} \mathbf{a} .
$$

- The scalar projection of \mathbf{b} onto \mathbf{a} (or the component of \mathbf{b} along \mathbf{a}) is denotes by $\operatorname{comp}_{\mathbf{a}} \mathbf{b}$ and can be found by the formula

$$
\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}
$$

EXAMPLE 11. Given $\mathbf{a}=\langle 4,3\rangle$ and $\mathbf{b}=\langle 1,-1\rangle$. Find:

- $\mathbf{a} \cdot \mathbf{b}=$
- $|\mathbf{a}|=$
- $|\mathbf{b}|=$
- $\operatorname{proj}_{\mathbf{b}} \mathbf{a}=$
- $\operatorname{comp}_{\mathbf{a}} \mathbf{b}=$

EXAMPLE 12. Find the distance from the point $P(-2,3)$ to the line $y=3 x+5$.

