Section 1.3: Vector functions

Parametric equations:

$$
x=x(t), \quad y=y(t)
$$

where the variable t is called a parameter. Each value of the parameter t defines a point that we can plot. As t varies over its domain we get a collection of points $(x, y)=(x(t), y(t))$ on the plane which is called the parametric curve.

Each parametric curve can be represented as the vector function:

$$
\overrightarrow{r(t)}=\langle x(t), y(t)\rangle .
$$

Note that Parametric curves have a direction of motion given by increasing of parameter t. So, when sketching parametric curves we also include arrows that show the direction of motion.

EXAMPLE 1. Examine the parametric curve $x=\cos t, \quad y=\sin t, \quad 0 \leq t \leq 3 \pi / 2$.

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| t | 0 | $\pi / 4$ | $\pi / 2$ | \cdots | | |
| (x, y) | | | | | | |

EXAMPLE 2. Given $\mathbf{r}(t)=\left\langle t+1, t^{2}\right\rangle$.
(a) Does the point $(4,3)$ belong to the graph of $\mathbf{r}(t)$?
(b) Sketch the graph of $\mathbf{r}(t)$.

t	$\mathbf{r}(t)$
-2	
-1	
0	
1	
2	

(c) Find the Cartesian equation of $\mathbf{r}(t)$ eliminating the parameter.

EXAMPLE 3. Find the Cartesian equation for $\mathbf{r}(t)=\cos t \mathbf{i}+\cos (2 t) \mathbf{j}$

EXAMPLE 4. An object is moving in the $x y$-plane and its position after t seconds is given by $\mathbf{r}(t)=$ $\left\langle 1+t^{2}, 1+3 t\right\rangle$.
(a) Find the position of the object at time $t=0$.
(b) At what time does the object reach the point $(10,10)$.
(c) Does the object pass through the point $(20,20)$?
(d) Find an equation in x and y whose graph is the path of the object.

A Vector equation of the line passing through the point (x_{0}, y_{0}) and parallel to the vector $\mathbf{v}=\langle a, b\rangle$ is given by

$$
\mathbf{r}=\mathbf{r}_{\mathbf{0}}+t \mathbf{v}
$$

where $\mathbf{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}\right\rangle$.

The vector equation of the line can be rewritten in parametric form. Namely, we have

$$
\begin{aligned}
\langle x(t), y(t)\rangle & =\mathbf{r}=\mathbf{r}_{\mathbf{0}}+t \mathbf{v}= \\
& =\left\langle x_{0}, y_{0}\right\rangle+t\langle a, b\rangle=\left\langle x_{0}, y_{0}\right\rangle+\langle t a, t b\rangle= \\
& =\left\langle x_{0}+t a, y_{0}+t b\right\rangle .
\end{aligned}
$$

This immediately yields that the parametric equations of the line passing through the point (x_{0}, y_{0}) and parallel to the vector $\mathbf{v}=\langle a, b\rangle$ are

$$
x(t)=x_{0}+a t, \quad y(t)=y_{0}+b t .
$$

EXAMPLE 5. Find parametric equations of the line
(a) passing through the point $(1,0)$ and parallel to the vector $\mathbf{i}-4 \mathbf{j}$;
(b) passing through the point $(-4,5)$ with slope $\sqrt{3}$;
(c) passing through the points $(7,2)$ and $(3,2)$.

EXAMPLE 6. Determine whether the lines $\mathbf{r}(t)=\langle 1+t, 1-3 t\rangle, \quad \mathbf{R}(s)=\langle 1+3 s, 12+s\rangle$ are parallel, orthogonal or neither. If they are not parallel, find the intersection point.

