Section 3.3:Rates Of Change In The Natural And Social Sciences.

Let $s(t)$ be the position function of an object. Its rate of change with respect to time is the velocity:

$$
v(t)=s^{\prime}(t) .
$$

- If $v(t)=0$ then the object is at rest;
- if $v(t)>0$ then the object is moving in the positive direction (i.e. is advancing, up or right);
- if $v(t)<0$ then the object is moving in the negative direction (i.e. is retreating, down or left);

Rectilinear motion (motion along a line): A particle representing some object is allowed to move in either direction along a line.

EXAMPLE 1. A particle is moving in a straight line. Its position is given by

$$
s(t)=4 t^{3}-9 t^{2}+6 t+2,
$$

where t is measured in seconds and s is measured in meters.
(a) Find the velocity $v(t)$ of the particle at time t.
(b) When is the particle at rest?
(c) When is the particle moving in the positive direction?
(d) Draw a diagram to represent the motion of the particle.
(e) Find the total distance the particle traveled during the first three seconds. (Hint:Calculate each distance between turns and then add to get the total.)

EXAMPLE 2. A ball is thrown vertically upward with a velocity of $80 \mathrm{ft} / \mathrm{s}$. Its height after t seconds is given by

$$
s(t)=80 t-16 t^{2}
$$

What is the maximum height reached by the ball?

EXAMPLE 3. A spherical balloon is being inflated. Find the rate of increase of the volume with respect to the radius r when r is 1 ft . (Recall that the volume of a sphere of radius r is given by $V=\frac{4}{3} \pi r^{3}$.)

