13.4: Polar Coordinates

The polar coordinate system consists of:

- the pole (or origin) labeled O;
- the polar axis which is a ray starting at O (usually drawn horizontally to the right);

The polar coordinates (r, θ) of a point P :

- θ is the angle between the polar axis and the line $O P$ (the angle is positive if measured in counterclockwise direction from the polar axis);
- r is the distance from O to P.

EXAMPLE 1. Plot the points whose polar coordinates are given:
(a) $(1, \pi / 3)$
(b) $(5,-\pi / 2)$.

The connection between polar and Cartesian coordinates:

$$
\begin{array}{ll}
\cos \theta= & \sin \theta= \\
x= & y= \\
r^{2}= & \tan \theta=
\end{array}
$$

REMARK 2. In converting from the Cartesian to polar coordinates we must choose θ so that the point (r, θ) lies in the correct quadrant.

EXAMPLE 3. Convert the point $(4, \pi / 6)$ from polar to Cartesian coordinates.

EXAMPLE 4. Represent the point with Cartesian coordinates $(-10,10)$ in terms of polar coordinates.

EXAMPLE 5. Find the distance between the points $A(2, \pi / 6)$ and $B(3, \pi / 3)$ in polar coordinates.

EXAMPLE 6. What curve is represented by the polar equation $r=12$?

EXAMPLE 7. What curve is represented by the polar equation $\theta=\pi / 4$?

EXAMPLE 8. Sketch the region in the Cartesian plane consisting of points whose polar coordinates satisfy the following conditions: $1 \leq r \leq 2, \quad 0 \leq \theta \leq \pi$.

EXAMPLE 9. Sketch the curve with polar equation $r=2 \sin \theta$.

EXAMPLE 10. Sketch the curve with polar equation $r=2 \cos \theta$.

EXAMPLE 11. Sketch the curve $r=1+\cos \theta$.

EXAMPLE 12. Sketch the curve $r^{2}=4 \cos 2 \theta$.

