10.7: Taylor and Maclaurin Series

Problem: Assume that a function $f(x)$ has a power series representation about $x=a$:

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

and $f(x)$ has derivatives of every order. Find formula for c_{n} in terms of f.
Solution. We have
$f(x)=$

Putting $x=a$ in $f(x)$, we get \square
$f^{\prime}(x)=$

Substituting $x=a$ we have \square
Similarly,

$$
f^{\prime \prime}(x)=
$$

then $x=a \Rightarrow f^{\prime \prime}(a)=$ \square
$f^{\prime \prime \prime}(x)=$
then $x=a \Rightarrow f^{\prime \prime}(a)=$ \square
Continuing in this manner, you can see the pattern:
$f^{(n)}(a)=$

The Taylor series for $f(x)$ about $x=a$:
$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=$

$$
=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots
$$

Split the Taylor series as follows:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}= & \underbrace{\sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^{n}}_{\begin{array}{c}
T_{N}(x) \\
N-\text { th degree }
\end{array}}+\underbrace{\sum_{n=N+1}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}}_{\begin{array}{c}
R_{N}(x) \\
\text { Remainder }
\end{array}} \\
& \text { Taylor polynomial }
\end{aligned}
$$

THEOREM 1. If $\lim _{n \rightarrow \infty} R_{N}(x)=0$ when $|x-a|<R$ then

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}, \quad|x-a|<R .
$$

REMARK 2. In all examples that we will be looking at, we assume that $f(x)$ has a power series expansion, i.e.
$\lim _{n \rightarrow \infty} R_{N}(x)=0$ for some R. (This means you don't need to show it.)
EXAMPLE 3. Given that function f has power series expansion (i.e. Taylor series) centered at 4. Find this expansion and its radius of convergence if it is given that

$$
f^{(n)}(4)=\frac{(-1)^{n-1} 1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-3)}{2^{3 n-1} n}
$$

EXAMPLE 4. Find Taylor series for $f(x)=e^{3 x}$ at $x=1$. What is the associated radius of convergence?

EXAMPLE 5. Find Taylor series for $f(x)=\ln x$ at $x=1$. What is the associated radius of convergence?

EXAMPLE 6. Find Taylor series for $\ln (1+x)$ centered at $x=0$. What is the associated radius of convergence?

The Maclaurin series is the Taylor series about $x=0$ (i.e. $\mathbf{a}=\mathbf{0}$):

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots
$$

EXAMPLE 7. Find the Maclaurin series for $f(x)$:
(a) $f(x)=e^{x}$
(b) $f(x)=e^{-x}$
(c) $f(x)=x^{5} e^{-2 x^{2}}$

EXAMPLE 8. Find the Maclaurin series for $f(x)$:
(a) $f(x)=\cos x$
(b) $f(x)=\sin x$

Known Mclaurin series and their intervals of convergence you must have memorized:

$$
\begin{aligned}
& \frac{1}{1-x}=\quad \sum_{n=0}^{\infty} x^{n} \quad=\quad 1+x+x^{2}+x^{3}+\ldots \\
& e^{x} \quad=\quad \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \quad(-\infty, \infty) \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \quad(-\infty, \infty) \\
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \quad(-\infty, \infty) \\
& \arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \quad[-1,1]
\end{aligned}
$$

EXAMPLE 9. Find the sum of the series:
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{3^{2 n}(2 n!)}$
(b) $\sum_{n=0}^{\infty} \frac{2012^{n}}{n!}$
(c) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{2 n+1}$

EXAMPLE 10. (a) Determine Maclaurin Series for $\int \frac{\sin x}{x} \mathrm{~d} x$
(b) Evaluate $\int_{0}^{1} \frac{\sin x}{x} \mathrm{~d} x$ correct to within an error of 0.001 .

EXAMPLE 11. Use series to find the limit: $\lim _{x \rightarrow 0} \frac{1-\cos x}{1+x-e^{x}}$

