11.2: Vectors and the Dot Product in Three Dimensions

DEFINITION 1. A 3-dimensional vector is an ordered triple $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$
Given the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$, the vector a with representation $\overrightarrow{P Q}$ is

$$
\mathbf{a}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle
$$

The representation of the vector that starts at the point $O(0,0,0)$ and ends at the point $P\left(x_{1}, y_{1}, z_{1}\right)$ is called the position vector of the point P.

EXAMPLE 2. Find the vector represented by the directed line segment with the initial point $A(1,2,3)$ and terminal point $B(3,2,-1)$. What is the position vector of the point A ?

Vector Arithmetic: Let $a=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$.

- Scalar Multiplication: $\alpha \mathbf{a}=\left\langle\alpha a_{1}, \alpha a_{2}, \alpha a_{3}\right\rangle, \alpha \in \mathbb{R}$.
- Addition: $\mathbf{a}+\mathbf{b}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right\rangle$

TRIANGLE LAW
PARALLELOGRAM LAW

Two vectors \mathbf{a} and \mathbf{b} are parallel if one is a scalar multiple of the other, i.e. there exists $\alpha \in \mathbb{R}$ s.t. $\mathbf{b}=\alpha \mathbf{a}$. Equivalently:

$$
\mathbf{a} \| \mathbf{b} \Leftrightarrow
$$

The magnitude or length of $a=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$:

$$
|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

Zero vector: $\mathbf{0}=\langle 0,0,0\rangle,|\mathbf{0}|=0$.
Note that $|\mathbf{a}|=0 \Leftrightarrow \mathbf{a}=\mathbf{0}$.
Unit vector: $\hat{\mathbf{a}}=\frac{\mathbf{a}}{|\mathbf{a}|}$

Standard Basis Vectors:

$\mathbf{i}=\langle 1,0,0\rangle$
$\mathbf{j}=\langle 0,1,0\rangle$
$\mathbf{k}=\langle 0,0,1\rangle$
Note that $|\mathbf{i}|=|\mathbf{j}|=|\mathbf{k}|=1$.
We have:

$$
\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle=
$$

EXAMPLE 3. Given $\mathbf{a}=\langle 1,0,-3\rangle$ and $\mathbf{b}=\langle 3,1,2\rangle$. Find
(a) $|\mathbf{b}-\mathbf{a}|$.
(b) a unit vector that has the same direction as \mathbf{b}.

Dot Product of two nonzero vectors \mathbf{a} and \mathbf{b} is the NUMBER:

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}| \cdot|\mathbf{b}| \cos \theta
$$

where θ is the angle between \mathbf{a} and $\mathbf{b}, 0 \leq \theta \leq \pi$.
If $\mathbf{a}=\mathbf{0}$ or $\mathbf{b}=\mathbf{0}$ then $\mathbf{a} \cdot \mathbf{b}=0$.
Component Formula for dot product of $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$:

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

If θ is the angle between two nonzero vectors \mathbf{a} and \mathbf{b}, then

$$
\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \cdot|\mathbf{b}|}=-
$$

DEFINITION 4. Two nonzero vectors \mathbf{a} and \mathbf{b} are called perpendicular or orthogonal if the angle between them is $\theta=\pi / 2$.

EXAMPLE 5. For what value(s) of c are the vectors $c \mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and $4 \mathbf{i}+3 \mathbf{j}+c \mathbf{k}$ orthogonal?

EXAMPLE 6. The points $A(6,-1,0), B(-3,1,2), C(2,4,5)$ form a triangle. Find angle at A.

Projections:

- Scalar projection of vector \mathbf{b} onto vector $\mathbf{a}: \operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$
- Vector projection of vector \mathbf{b} onto vector $\mathbf{a}: \operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|}=$

EXAMPLE 7. Find the scalar and vector projections of $\langle 2,-2-1\rangle$ onto $\langle 3,3,4\rangle$.

DEFINITION 8. The work done by a force \mathbf{F} in moving and object from point A to point B is given by

$$
W=\mathbf{F} \cdot \mathbf{D}
$$

where $\mathbf{D}=\overrightarrow{A B}$ is the distance the object has moved (or displacement).
EXAMPLE 9. A force is given by a vector $\mathbf{F}=\mathbf{i}-\mathbf{j}+5 \mathbf{k}$ and moves a particle from the point $P(1,2,0)$ to the point $Q(2,3,5)$. Find the work done.

