Fall 2012 Math 152<br>Week in Review 9<br>courtesy: Oksana Shatalov<br>(covering Sections 10.5\& 10.6 )

## 10.5: Power Series

## Key Points

- For a given power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are only 3 possibilities:

1. There is $R>0$ such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$. We call such $R$ the radius of convergence.
2. The series converges only for $x=a$ (then $R=0$ ).
3. The series converges for all $x$ (then $R=\infty$ ).

- We find the radius of convergence using the Ratio Test.
- An interval of convergence is the interval of all $x$ 's for which the power series converges.
- You must check the endpoints $x=a \pm R$ individually to determine whether or not they are in the interval of convergence.


## Examples

1. For the following series find the radius and interval of convergence.
(a) $\sum_{n=0}^{\infty} \frac{n^{4} x^{n}}{7^{n}}$
(b) $\sum_{n=0}^{\infty} \frac{8^{n}(x+4)^{3 n}}{n^{3}+1}$
(c) $\sum_{n=1}^{\infty} \frac{(-9)^{n}(5 x-3)^{n}}{n}$
(d) $\sum_{n=1}^{\infty} \frac{(n+1)!(x-1)^{n+1}}{4^{n+1}}$
(e) $\sum_{n=0}^{\infty} \frac{(-6)^{n} x^{n}}{(3 n+1)!}$
2. Assume that it is known that the series $\sum_{n=0}^{\infty} c_{n}(x-3)^{n}$ converges when $x=5$ and diverges when $x=-2$. What can be said about the convergence or divergence of the following series:
(a) $\sum_{n=0}^{\infty} c_{n}(-7)^{n}$
(b) $\sum_{n=0}^{\infty} c_{n} 5^{n}$
(c) $\sum_{n=0}^{\infty} c_{n}(-3)^{n}$
(d) $\sum_{n=0}^{\infty} c_{n} 3^{n}$
(e) $\sum_{n=0}^{\infty} c_{n}(-1)^{n}$

## 10.6: Representation of Functions as Power Series

## Key Points

- Geometric Series Formula:

$$
\frac{1}{1-x}=\sum_{n=1}^{\infty} x^{n-1}=\sum_{n=0}^{\infty} x^{n}, \quad-1<x<1 .
$$

- Term-by-term Differentiation and Integration of power series:

If $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is differentiable (and therefore continuous) on the interval ( $a-R, a+R$ ) and

$$
\begin{aligned}
& -f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1} \\
& -\int f(x) \mathrm{d} x=C+\sum_{n=0}^{\infty} \frac{c_{n}}{n+1}(x-a)^{n+1}
\end{aligned}
$$

The radii of convergence of the power series for $f^{\prime}(x)$ and $\int f(x) \mathrm{d} x$ are both $R$.
3. Find a power series representation for the following functions and determine the interval of convergence.
(a) $f(x)=\frac{4}{1+x}$
(b) $f(x)=\frac{4}{2+4 x}$
(c) $f(x)=\frac{-9}{9-x^{4}}$
(d) $f(x)=\frac{x^{2012}}{2012-x}$
(e) $f(x)=\ln (3 x+5)$
(f) $f(x)=x^{5} \ln (3 x+5)$
(g) $f(x)=\frac{x^{4}}{(1-4 x)^{2}}$
(h) $f(x)=\arctan \left(16 x^{4}\right)$
4. Express the integral $\int_{-0.5}^{0} \frac{\mathrm{~d} x}{1-x^{7}}$ as a power series.

