Fall 2012 Math 152

Week in Review 4
courtesy: Oksana Shatalov
(covering Sections 8.1\&8.2 and Exam 1 Review)

8.1: Integration By Parts

Key Points

$$
\begin{gathered}
\int u \mathrm{~d} v=u v-\int v \mathrm{~d} u \\
\int_{a}^{b} u \mathrm{~d} v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v \mathrm{~d} u \quad \text { where }\left.\quad u v\right|_{a} ^{b}=u(b) v(b)-u(a) v(a) .
\end{gathered}
$$

To choose u use the LIATE rule, in order of preference for u :
Logarithms
Inverse Trigonometric Functions
Algebraic, powers of x
Trigonometric functions
Exponential functions

Examples

1. Compute the following integrals
(a) $I=\int \frac{x}{3} \sin \frac{x-1}{3} \mathrm{~d} x$
(b) $I=\int_{0}^{1} \frac{x^{2}}{e^{10 x}} d x$.
(c) $I=\int \arctan \frac{1}{x} \mathrm{~d} x$

8.2: Trigonometric Integrals

Key Points

- How to evaluate $\int \sin ^{n} x \cos ^{m} x \mathrm{~d} x$

1. If n is odd use substitution $u=\cos x$ (Strip out one sine and convert the rest to cosine.)
2. If m is odd use substitution $u=\sin x$ (Strip out one cosine and convert the rest to sine.)
3. If both n and m are odd use 1 or 2.
4. If both n and m are even, use the half-angle identities:

$$
\sin ^{2} x=\frac{1}{2}(1-\cos 2 x) ; \quad \cos ^{2} x=\frac{1}{2}(1+\cos 2 x) ; \quad \sin x \cos x=\frac{1}{2} \sin 2 x
$$

- ${ }^{1}$ How to evaluate $\int \sec ^{n} x \tan ^{m} x \mathrm{~d} x$

1. If n is even use formula $\sec ^{2} x=1+\tan ^{2} x$ and substitution $u=\tan x \Rightarrow \mathrm{~d} u=\sec ^{2} x \mathrm{~d} x$.
2. If m is odd use formula $\tan ^{2} x=\sec ^{2} x-1$ and substitution $u=\sec x \Rightarrow d u=\sec x \tan x \mathrm{~d} x$

- How to evaluate $\int \sin (A x) \cos (B x) \mathrm{d} x, \int \sin (A x) \sin (B x) \mathrm{d} x, \int \cos (A x) \cos (B x) \mathrm{d} x$

Use the following identities:(The identities below need not be memorized for the exam)

$$
\begin{aligned}
\sin A \cos B & =\frac{1}{2}(\sin (A-B)+\sin (A+B)) \\
\sin A \sin B & =\frac{1}{2}(\cos (A-B)-\cos (A+B)) \\
\cos A \cos B & =\frac{1}{2}(\cos (A-B)+\cos (A+B))
\end{aligned}
$$

Examples

2. Compute the following integrals
(a) $I=\int \frac{\sec ^{4} x}{\tan ^{7} x} \mathrm{~d} x$
(b) $I=\int \sin ^{5} x \sqrt{\cos x} \mathrm{~d} x$
(c) $I=\int \frac{\cos ^{5}(\ln x)}{x} \mathrm{~d} x$
(d) $\int \cos ^{2}(3 x) \sin ^{2}(3 x) d x$

General Exam 1 Review

3. If $F(x)=\int_{0}^{e^{x}} \cos \left(t^{2}\right) d t$ what is $F^{\prime}(x)$?
4. Find the area between the curves $y=3 x^{2}$ and $y=6 x$ from $x=0$ to $x=4$.
5. Compute $\int_{0}^{1} \frac{2 x}{\sqrt[4]{x^{2}+1}} d x$.
6. After an appropriate substitution, the integral $\int_{-1}^{2} 3 x^{5} \sqrt{x^{3}+1} d x$ is equivalent to which of the following?
(a) $\int_{0}^{3}\left(u^{3 / 2}-u^{1 / 2}\right) d u$
(b) $\int_{-1}^{2}\left(u^{1 / 2}-u^{3 / 2}\right) d u$
(c) $\int_{0}^{3}\left(u^{1 / 2}+u^{3 / 2}\right) d u$
(d) $\int_{0}^{9}\left(u^{3 / 2}-u^{1 / 2}\right) d u$
(e) $\int_{-1}^{2} x^{3} u^{1 / 2} d u$
7. Determine the area of the region bounded by the x-axis, the curve $y=x^{4}$ and tangent line to this curve at the point $(-1,1)$.
8. The height of a monument is 20 m . A horizontal cross-section at a distance x meters from the top is an isosceles triangle with base $x / 4$ meters and height $x / 3$ meters. Set up, but do not evaluate, an integral for the volume of the monument.

[^0]9. Find the volume of the solid whose base is the area enclosed by $y=e^{x}$ and $y=e^{-x}$ from $[0,1]$ with cross-sections perpendicular to the x-axis that are equilateral triangles.
10. Find the volume of the solid formed by rotating the region bounded by $x=0, y=\ln (x), y=0$, and $y=3$ about the y-axis.
11. Using cylindrical shells which of the following integrals gives the volume of the solid formed by rotating the region bounded by $y=\sqrt{x}$ and $y=x^{2}$ about the line $x=-2$?
(a) $2 \pi \int_{0}^{1}(x-2)\left(\sqrt{x}-x^{2}\right) d x$
(b) $2 \pi \int_{0}^{1}(x+2)\left(\sqrt{x}-x^{2}\right) d x$
(c) $\pi \int_{0}^{1}\left(x^{2}-\sqrt{x}\right)^{2} d x$
(d) $\pi \int_{0}^{1}\left[\left(y^{2}-2\right)^{2}-(\sqrt{y}-2)^{2}\right] d y$
(e) $\pi \int_{0}^{1}\left(y^{2}-\sqrt{y}\right)(y+2) d y$
12. A 15 -Newton weight is suspended vertically at the end of a 30 m long rope. The rope weighs 6 Newtons. How much work (in Newton-m) is required to pull the weight to the top?
13. If a $25 J$ work is required to keep a spring 1 m beyond its natural length, how much work is done in stretching the spring from $2 m$ to $4 m$ beyond its natural length?
14. A rectangular swimming pool 20 m long, 10 m wide and 3 m deep is full of water (density $=$ $\rho \mathrm{kg} / \mathrm{m}^{3}$). What is the work required to pump all the water out of the top of the pool? (Leave your answer in terms of density ρ and the gravitational constant g.)
15. A tank of water is a trough 10 feet long and has a vertical cross section in the shape of a semi circle with radius 4 feet, diameter at the top. The tank is filled with water. The water is pumped from a spout at the top of the tank that is 0.5 ft high. Find the work needed to pump out the water until the water level is 1 m from the bottom. Just set up the integral (assume that the density of water is $62.5 \mathrm{lb} / \mathrm{ft}^{3}$.)
16. A tank has the shape of an upright circular cone with height $15 m$ and radius $3 m$. In addition, there is a 1 meter high spout at the top of the cone from which the water exits the tank. If the tank is initially full to a water depth of $9 m$, find the work required to pump all of the water out of the spout. Just set up the integral. (Leave your answer in terms of density ρ and the gravitational constant g.)
17. Find the average value of $f(x)=\sin ^{2} x$ over the interval $\left[0, \frac{\pi}{4}\right]$.
18. Compute the following integrals:
(a) $I=\int_{0}^{1}\left(x^{2}+4 x-1\right) e^{x} \mathrm{~d} x$.
(b) $\int \sqrt{x} \ln (x) d x$

[^0]: ${ }^{1}$ Integral $\int \csc ^{n} x \cot ^{m} x \mathrm{~d} x$ can be found by similar methods because of the identity $1+\cot ^{2} x=\csc ^{2} x$.

