Fall 2012 Math 152

Week in Review 7

courtesy: Oksana Shatalov

(covering Section 10.2 & Exam 2 Review)

10.2: Series

Key Points

- Infinite series $\sum_{n=1}^{\infty} a_n$ (n=1 for convenience, it can be anything).
- Partial sums: $s_N = \sum_{n=1}^N a_n$. Note $s_N = s_{N-1} + a_N$.
- If $\{s_N\}_{N=1}^{\infty}$ is convergent and $\lim_{N\to\infty} s_N = s$ exists as a real number, then the series $\sum_{n=1}^n a_n$ is convergent. The number s is called the **sum** of the series.
- Series we can sum:
 - Geometric Series $\sum_{n=1}^{\infty} ar^{n-1} = \sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}, \quad -1 < r < 1$
 - Telescoping Series
- THE TEST FOR DIVERGENCE: If $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- The Test for Divergence cannot be used to prove that a series converges. It can only show a series is divergent.

Examples

- 1. Given a series whose partial sums are given by $s_n = (7n+3)/(n+7)$, find the general term a_n of the series and determine if the series converges or diverges. If it converges, find the sum.
- 2. Find the sum of the following series or show they are divergent:

(a)
$$\sum_{n=1}^{\infty} \frac{7+5^n}{10^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{8}{(n+1)(n+3)}$$

- 3. Write the repeating decimal $0.\overline{27}$ as a fraction.
- 4. Use the test for Divergence to determine whether the series diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{n^5}{3(n^4+3)(n+1)}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n\sqrt{n}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{6 - e^{-n}}$$

Exam 2 Review

- 1. Evaluate the integral $I = \int (4x^2 25)^{-3/2} dx$
- 2. Determine whether the given integral is convergent or divergent.

(a)
$$\int_{1}^{\infty} \frac{4 + \cos^4 x}{x} \, \mathrm{d}x$$

(b)
$$\int_0^\infty \frac{1}{\sqrt{x} + e^{4x}} \, \mathrm{d}x$$

- 3. Evaluate $I = \int_0^{2012} \frac{1}{\sqrt{2012 x}} dx$.
- 4. The curve $y = \sin x$ for $0 \le x \le \pi$ is rotated about the x-axis. Set up, but don't evaluate the integral for the area of the resulting surface.
- 5. Determine if the sequence $\{a_n\}_{n=2}^{\infty}$ is decreasing and bounded:
 - (a) $a_n = \ln n$
 - (b) $a_n = \cos n^2$
 - (c) $a_n = e^{-n}$
 - (d) $a_n = e^n + 11$
 - (e) $a_n = 1 \frac{1}{n^2}$
- 6. The curve $y = \frac{1}{2}(e^x + e^{-x})$, $0 \le x \le 1$, is rotated about the x-axis. Find the area of the resulting surface.
- 7. Set up, but don't evaluate the integral for the length of the curve $x=2t^2, \quad y=t^3, \quad 0 \leq t \leq 1.$
- 8. Find length of the curve $y = \frac{1}{\pi} \ln(\sec(\pi x))$ from the point (0,0) to the point $(\frac{1}{6}, \ln \frac{2}{\sqrt{3}})$.
- 9. Use a trigonometric substitution to eliminate the root: $\sqrt{24-12x+2x^2}$.
- 10. Determine if the sequence converges or diverges. If converges, find its limit.

(a)
$$\left\{ \frac{2012 + (-1)^n}{n^{2012}} \right\}_{n=1}^{\infty}$$

(b)
$$\left\{ \sqrt{\frac{7n+6n^3+n^2}{(n+3)(n^2+8)}} \right\}_{n=4}^{\infty}$$

- 11. Evaluate the integral $\int \frac{(x-1)^2}{5\sqrt{25-(x-1)^2}} dx$.
- 12. Compute $S = \sum_{n=1}^{\infty} (e^{1/n} e^{1/(n+1)}).$

13. Write out the form of the partial fraction decomposition (do not try to solve)

$$\frac{20x^3 + 12x^2 + x}{(x^3 - x)(x^3 + 2x^2 - 3x)(x^2 + x + 1)(x^2 + 9)^2}$$

- 14. Evaluate the integral $\int \frac{5x^2 + x + 12}{x^3 + 4x} dx$
- 15. Assuming that the sequence defined recursively by $a_1 = 1$, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{16}{a_n} \right)$ is convergent, find its limit.
- 16. For what values of x the series $\sum_{n=0}^{\infty} (4x-3)^{n+3}$ converges? What is the sum of the series?