Section 2.4: The Precise Definition of a Limit

(E-8 definition)

Question: What does it mean $\lim_{x\to a} f(x) = L$? To motivate the precise definition of limit, consider the function

$$f(x) = \begin{cases} 2x - 1, & \text{if } x \neq 3\\ 1, & \text{if } x = 3 \end{cases}$$

• What is $\lim_{x\to 3} f(x)$?

$$\lim_{x \to 3} f(x) = 5$$

- Problem 1 How close to 3 does x have to be so that f(x) differs from 5 by less than 0.1?
 - The distance from x to 3 is $\times -3$
 - The distance from f(x) to 5 is $\frac{1f(x)-5}{}$
 - Reformulation of problem 1: Find a number δ such that

If
$$(x)-5$$
 < 0.1, if $|x-3| < \delta$, $x \neq 3$

If $\delta = \frac{0.1}{2} = 0.05$, then

Indeed,

$$|f(x)-5| = |(2x-1)-5| = |2x-6| = 2|x-3| < 2\delta = 2.005 = 0.1$$

Thus an answer to the Problem 1 is given by $\delta = \underline{\mathbf{0.05}}$; that is, if x is within a distance of $\underline{\mathbf{0.05}}$ from 3, then f(x) will be within a distance of $\underline{\mathbf{0.1}}$ from 5.

• Problem 2 How close to 3 does x have to be so that f(x) differs from 5 by less than 0.01?

Froblem 2 How close to 3 does x have to be so that
$$f(x)$$
 differs from 5 by less than 0.01 ?

Find a number δ , Such that if

 $|x-3| < \delta$, then $|f(x)-5| < 0.01$
 $\delta = 0.01 = 0.005$. $|f(x)-5| = 2|x-3| < 2\delta = 2.0.005 = 0.0$

• Problem 3 How close to 3 does x have to be so that f(x) differs from 5 by less than 0.001?

$$\begin{cases} = \frac{0.001}{2} = 0.0005 \\ \text{If } |x-3| < 0.0005, \text{ then} \\ |f(x)-5| = 2|x-3| < 2.0.0005 = 0.001 \end{cases}$$

• Problem 4 How close to 3 does x have to be so that f(x) differs from 5 by less than an arbitrary positive number ε ?

$$|f(x) - 5| < \varepsilon \quad \text{if} \quad 0 < |x - 3| < \delta = \frac{\varepsilon}{2}.$$
 (1)

In other words, we can make the values of f(x) within an arbitrary distance ε from 5 by taking the values of x within a distance $\varepsilon/2$ from 3 (but $x \neq 3$). This is a precise way of saying that f(x) is close to 5 when x is close to 3. Note that (1) can be rewritten as follows:

£70

Title: Feb 2-2:54 PM (3 of 8)

DEFINITION 1. Let f(x) be a function defined for all x in some open interval containing the number a, except possibly at a itself. Then we say that the limit of f(x) as x approaches a is L, and we write

$$\lim_{x \to a} f(x) = L,$$

if for every number $\epsilon > 0$ we can find a number $\delta > 0$ such that

REMARK 2. For a limit from the right we need only assume that f(x) is defined on an interval (a, b) extending to the right of a and that the ϵ condition is met for x in an interval $a < x < a + \delta$ extending to the right of a. A similar adjustment must be made for a limit from the left.

Title: Jan 30-11:45 PM (4 of 8)

$$\lim_{x \to a} f(x) = L$$

Assume that we are given a positive number ϵ , and we try to prove that we can find a number $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 whenever $0 < |x - a| < \delta$.

There are two things to do:

1. Preliminary analysis of the problem (guessing a value for δ);

2) Proof (showing that the δ works). Show $|f(x) - L| < \varepsilon$, if $0 < |x-a| < \delta$

Note that the value of δ is not unique. Namely, once we have found a value of δ that fulfills the requirements of the definition, then any smaller positive number $\delta_1, \delta_1 < \delta$, will also fulfill those requirements.

EXAMPLE 3. Use the "epsilon-delta" definition to prove that $\lim_{x \to 0} (3x - 1) = 11$.

The Guessing
$$\delta$$
: if $0 < (x - 4) < \delta$ then $|x(x) - 4| < \epsilon$.
Given $\epsilon > 0$.
 $|x(x) - 4| = |(3x - 1) - 4| = |3x - 12| = |3x - 4| < |3| \delta < \epsilon$

Proof Given
$$\varepsilon > 0$$
, choose $\delta = \frac{\varepsilon}{3}$. (**)

If $|0 < |x - 4| < \delta$, then

$$|\xi(x) - 11| = |(3x - 1) - 11| = \frac{(x)}{(x^*)}$$

$$= |3x - 12| = 3|x - 4| < 3\delta = 3$$
. $\frac{\varepsilon}{3} = \varepsilon$.

So, if $0 < |x - 4| < \delta$, then $|\xi(x) - 14| < \varepsilon$, which means that

$$\lim_{x \to 4} |\xi(x)| = \lim_{x \to 4} (3x - 1) = 11$$

$$\lim_{x \to 4} |\xi(x)| = \lim_{x \to 4} (3x - 1) = 11$$

EXAMPLE 4. Use the "epsilon-delta" definition to prove that
$$\lim_{x\to 5} x^2 = 25$$
.

(1) Gruessing 6: if $0 < |x-5| < \delta$, then $|x^2| = 25$.

Given $E > D$

$$|x^2 - 25| = |(x-5)(x+5)| =$$

$$|x^2 - 25| = |(x-5)(x+5)| =$$

$$|x+5| < \delta | = |x+5| < \delta | =$$

To estimate $|x+5|$ assume that $|x+5| < \delta | = |x-5| < \delta | =$

Title: Jan 30-11:47 PM (7 of 8)

2 Proof Given
$$E \neq 0$$
, choose $\delta = \min \{\frac{E}{H_5}\}$

If $0 < |x - 5| < \delta |$ then

$$|f(x) - 25| = |x^2 - 25| = |x - 5| \cdot |x + 5|$$

(**) $\delta |x + 5|$ (**)

Since $|x - 5| < \delta < 1$, we get
$$|x - 5| < 1 \Rightarrow -1 < x - 5 < 1 \Rightarrow + 5 \Rightarrow + 5$$

Title: Feb 2-3:30 PM (8 of 8)