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Section 2.5:Continuity

DEFINITION 1. A function f(x) is continuous at r = a z’}ilimf(.r) = f(a)\ More implicitly: if f is

. r—a
continuous at a then

—

1. f(a) is defined (i.e. a is in the domain of f);

2. lim f(x) erists.
IT—ra

3. limf(z) = f(a).

Tr—ra

A function is said to be continuous on the interval [a,b] if it is continuous at each point in the interval.

Geometrically, if f is continuous at any point in an interval then its graph has no break in it (i.e. can
be drawn without removing vour pen from the paper).
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REASONS FOR BEING DISCONTINUOUS:
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f(a) is not defined

(i.e. a is not in the domain of f)

f(a) is defined, but

the limit as z — a DNE

f(a) is defined and lim f(z) exists,

but lin f () # f(a)
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Classification of discontinuities:

infinite discontinuity removable discontinuity
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EXAMPLE 2. Explain why each function is discontinuous at the given point:

2r
(a) f(r)= ——5 @=3 o nob in the dowain ~t 2)

$(3) is undefined ( x=3

5 it z=1,

a? =2 +1

Lim £6 =lim ﬁ%FL= lim () =l t)=0 £ 404)=5

X4 x> xap X x>\
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DEFINITION 3. A function f is continuous from the right at © =a if

lim_f(x) = f(a)

r—at

and f is continuous from the left at a if

lim f(z)= f(a).

r—ra=

REMARK 4. Functions continuous on an interval if it is continuous at every number in the interval.

At the end point of the interval we understand continuous to mean continuous from the right or continuous

from the left.

EXAMPLE 5. Find the interval(s) where f(x) =9 — 22 is continuous.

First  find +e domain of 2 |
q9-x>Z0
q 7 A~
R =
x| €3
Aomain | -3¢ ¥ 5‘5_)

CDV\MoV\'. L0 is coh¥i haoup

A=a oamd -3<X<3
Lim £0) =Jq-a* = (o

Xao_
—

le, £00)= J q- ‘31 :0:_(2
-3
‘&m #c") = \] q- ("3]1=O=_r(_j

x5t

R

on\ \ c”’n 31
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EXAMPLE 6. Find the constant ¢ that makes g continuous on (—oo,00):

2?2 —c? if x<4
9(x) =

cx? —1 if x>4

Sinte K=C" and ext-\l ere
polymorni aks (te. combintoun funchvons) ,
%(x\ 16 on¥inwouwy o every Po'm-\-, {"U“P*s

wmoembe, X =4 -

To a,ﬁxo.m\-u. thak jLA :
we wud  Hhed oy = B gox) (:g(q\\

iS conHnuowy ok x=Y

X9y~ x>y*
x<q x79

Lo (X‘L— Ca>= L (¢ Xl"l\
'ELE X2yt

4L-¢c* = c 4 -
A
c*t16c -11 =0
(c-t) (c+ 17) =0

,/C':l ©R c=‘l?3
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[ 2
EXAMPLE 7. For each of the foHo-wing%} find all %@nténuities%la-sséfy them by using I@'mém%ve the
continuity interval(s) for the corresponding function: If the discontinuity is removable, find a function g

that agrees with the given funection except of the discontinuity point and is continuous at that point.

22 -9 G x =81 = X =3 o\i.sc.on{-inwl-\—ib;

(a) o) = —— d . x__q &
— x?3°" PRI </3(X+q)

Q) ,.——%———*—" = - _‘_ eyishs

L3+ 9 (8
—s\U(-nWC" ) G 6 @cis\ ek

ndefA

— -c(.ﬂ ol vemovable
Lisconkimitiss ot x =12,
£¢x) , x#F £3

© 500=

A =
2 y X 3
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) )= —
— = == 2 :
@ xX+12=0 ? i’SC—oV\-Hr\UA'Ig ‘
@ - <
\ < 0O
fim S
X=>lL at x ==12_ LK) has
X < (2 ih,lﬁ,'nrlf‘{

olr’s cohv'-{w‘v'-j _

@ (-—m/—12> U/ (_Izlm>
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EXAMPLE 7. For each of the following, find all discontinuities, classify them by using limits, give the
continuity interval(s) for the corresponding function. If the discontinuity is removable, find a function g

that agrees with the given function except of the discontinuwity point and is continuous ot that point.

Note Hud £00 is defined for all x.
24z if v<?2

(c) flx)=% 8—a if ¢>2 Twveshigate x=2 by using Lmits:
if ©=2 Lm_ -ng) — ‘aw (""l*x'\:lz*;.: S
X2 X<2 X7
‘f Lim Ux) = Low. (8 -0 =81 =6
xa2t oz ¥
Lim 200 = ¢ % H = Q)

X2 _ _
Thws £ hWa$ o..\—v'-tmowLL,\e AiSC.ow\-\nw_-F;Bq;\- Pe=sa

T4 xFL then £ IS o polynomial, i.e.
_‘(‘\ iS¢ conhinuwownn Mherve,

Tderval o continuity: (= =, -7) U (3, )

To remove Yhe Jisconkinuily ok X= 2, define
L, XFX X242 , XS

\

?S(x\';
6 )X=J. g-)L/'JL>3_

(3(#\ 15 conhnuwow u{fﬂw\ert\-
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Intermediate Value Theorem: If f(z) is _continous on the closed interval El, b] and N is any

number strictly between f(a) and f(b), then there is a number ¢, a < ¢ < b, wo that f(e) = N.
w
£(O<N <1cu..) o FIO< N < pla)

c‘m-\—inw'\\\g i S \'mpo\"h’\'\‘
4P $y-- - - -

3

—- fTI2Y h‘/‘ﬂf(c\

b =t NPT T
7. .
- - -F(a)

The IVT  impliey exisitne of o Soludmon %2C
foxr i equakion £ ()= N.

Avd i( $0A is polynonmialy Hhem X=C_
o +he 'Potkjh.oquL f.(x) -N .

WS oo \'00'\'

10
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Intermediate Value Theorem: If f(z) is continous on the closed interval [a,b] and N is any

number strictly between f(a) and f(b), then there is a number ¢, a < ¢ < b, so that f(¢) = N.

is _N

EXAMPLE 8. If f(z) = 2° — 22% + 2% 4+ 2, show¥ ere¥a number ¢ so that fle)= i

Since the  fundian 403 TS continuoun evavy where
(o.s o fob}wom:q,ﬂ) in ocder to au,apLA '\JN-T-\JT:
Wis suH,-o;mL to findk oo and b swch Hhaa

the numher AL 1S shricHy Retwen #£(a) and £(L)

x| £(x)
ol 2 ~>1

I B> EIEY A
4 -3+ 16 +Y4+2L <D K|

Wae ofblained thak
e > 4 and &)<
'ﬂr\ws, YHhere Wi SsES o
numbeyr € Such Yhak

gcc<o . ond 4= 4
| —
or{ =1 £C<0

11
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Intermediate Value Theorem: If f(x) is continous on the closed interval [a,b] and N is any

number strictly between f(a) and f(b), then there is a number ¢, a < ¢ < b, so that f(c¢) = N.

EXAMPLE 9. Show that following equation has a solution {a root) between 1 and 2:

3% — 227 — 22 —5=0.

z | 40 let 0= 3x-af —ax-S.
1 [»-a-2-5<0 Since  £0D is conkihueu on C42)
2 |38-24-22-5y0 (ar a Pola*nomiq.k\ , we  will

Q‘FP‘% He T VT, 55 IvT
W is Su{—{—;dc_n'}' +o find
& omd b such that
1<al<2  and £(a)f(H)<O
(ie. £(a) amd £(L) have
oPPosiK Sioms).
I-(- =4 omd b= Q&

Yan £ (o) = H)<0 ond
£(1L) = 4() >0,
—‘flﬂ'—'—" have o Soluivon

oNn (\»1\'

Seo

)

12
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