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Section 3.1: Derivative

DEFINITION 1. The Derivative of a function f(x) at r = a is
f(z) = f(a) fla+h)— f(a)

] _ . _ .
fila) = ¢1~1—I>I31 Tr—a o !]115}3 h

Other common notations for the derivative of y = f(x) are f’, %f(.z,]

It follows from the definition that the derivative f’(a) measures: n= -F ' (o.)
e The slope of the tangent line to the graph of f(z) at (a, f(a));

e The instantaneous rate of change of f(x) at z = a; w( Q) = -F'(a,\

e The instantaneous velocity of the object at time at t = a (if f(¢) is the position of an object at

time ).
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EXAMPLE 2. Given f(z) = p— Use definition of the derivative to calculate f(x) at x = —3.
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f’(ﬁ) = lim f(y) - f((l) = lim f((}. + h) - f(a)

e T —a h—0 h
EXAMPLE 3. Each limil below represents the derivative of function f(x) at ¥ = a. State  and a in

each case.
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Question: Where does a derivative not exist for a function?

Y

X=O., b,C

DEFINITION 4. A function f(z) is said to be differentiable at x = a if f'(a) exists.

EXAMPLE 5. Refer to the graph above to determine where f(x) is not differentiable.

Anewer . X= a,b, C
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CONCLUSION: A function f(z) is NOT differentiable at z = a if

e f(z) is not continuous at x = a;
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e f(x) has a sharp turn at z = a (left and right derivatives are not the same );
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e f(x) has a vertical tangent at x = a.
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THEOREM 6. If f is differentiable at a then f is continuous at a.
( )

£'(o) exisks

[oigfg.  \ =

The derivative as a function: If we replace @ by x in Definition 1 we get:

f'(z) = lim

f(z+h)— f(m).

h—0 h

A new function g(z) = f’(x) is called the derivative of f.
—

EXAMPLE 7. Use the graph of f(x) below to sketch the graph of the derivative f'(x).
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EXAMPLE 7. Use the definition of the derivative to find f'(z) for f(z) = /1+ 3.
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