4.2:Inverse Functions

DEFINITION 1. A function of domain X is said to be a **one-to-one** function if no two elements of X have the same image, i.e.

if $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$. Equivalently, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Horizontal line test: A function if one-to-one is and only if no horizontal line intersects its graph more once.

EXAMPLE 2. Are the following functions one-to-one?

$$f(x) = x^3$$
, $g(x) = \sqrt{x} + 3$, $u(x) = |x|$, $w(x) = \sin x$

EXAMPLE 3. Prove that $f(x) = \frac{x-3}{x+3}$ is one-to-one $(x \neq -3)$.

DEFINITION 4. Let f be a one-to-one function with domain X and range Y. Then the inverse function f^{-1} has the domain Y and range X and is defined for any y in Y by

$$f^{-1}(y) = x \Leftrightarrow f(x) = y.$$

REMARK 5. Reversing roles of x and y in the last formula we get:

$$f^{-1}(x) = y \Leftrightarrow f(y) = x.$$

REMARK 6. If y = f(x) is one-to-one function with the domain X and the range Y then

for every x in X $f^{-1}(f(x)) = x$ and

for every x in Y $f(f^{-1}(x)) = x$

CAUTION: $f^{-1}(x)$ does NOT mean $\frac{1}{f(x)}$.

TO FIND THE INVERSE FUNCTION OF A ONE-TO-ONE FUNCTION f:

- 1. Write y = f(x).
- 2. Solve this equation for x in terms of y (if possible).
- 3. Interchange x and y. The resulting equation is $y = f^{-1}(x)$.

EXAMPLE 7. (cf. Example3) Find the inverse function of $f(x) = \frac{x-3}{x+3}$. Find the domain and the range of both f and f^{-1} .

	Domain	Range
Function f		
Function f^{-1} (Inverse of f)		

FACT: The graph of f^{-1} is obtained by reflecting the graph of f about the line y = x.

THEOREM 8. If f is a one-to-one differentiable function with inverse function $g = f^{-1}$ and $f'(g(a)) \neq 0$, then the inverse function is differentiable at a and

$$g'(a) = \frac{1}{f'(g(a))}.$$

Proof.

EXAMPLE 9. Suppose that g is inverse of f. Find g'(a) where

(a)
$$f(x) = \frac{x-3}{x+3}$$
, $a = 3$ (cf. Example3)

(b)
$$f(x) = \sqrt{x^3 + x^2 + x + 1}, a = 2$$

(c)
$$f(x) = 4 + 3x + e^{3(x-1)}, a = 8.$$