4.3:Logarithmic Functions

DEFINITION 1. The exponential function $f(x)=a^{x}$ with $a \neq 1$ is a one-to-one function. The inverse of this function, called the logarithmic function with base a, is denoted by $f^{-1}(x)=\log _{a} x$.

Namely,

$$
\log _{a} x=y \quad \Leftrightarrow \quad a^{y}=x
$$

In other words, if $x>0$ then $\log _{a}(x)$ is the exponent to which the base a must be raised to give x.
EXAMPLE 2. Evaluate
(a) $\log _{2} 16$
(b) $\log _{3} \frac{1}{81}$
(c) $\log _{125} 5$
(d) $\log _{1} 125$
(e) $\log _{a} 1$

CANCELLATION RULES:

- $\log _{a} a^{x}=x$ for all $x \in \mathbb{R}$
- $a^{\log _{a} x}=x$ for $x>0$.

Graphs of logarithmic functions $y=\log _{a} x$:

Properties: Assume that $a \neq 1$ and $x, y>0$.

$$
\begin{gathered}
\log _{a}(x y)=\log _{a} x+\log _{a} y \\
\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y \\
\log _{a}\left(x^{y}\right)=y \log _{a} x
\end{gathered}
$$

In particular,

$$
\begin{aligned}
& \log _{a} \sqrt{x}= \\
& \log _{a} \sqrt[n]{x}=
\end{aligned}
$$

Notation: Common Logarithm: $\log x=\log _{10} x$. (Thus, $\log x=y \quad \Leftrightarrow \quad 10^{y}=x$.) Natural Logarithm: $\ln (x)=\log _{e}(x)$. (Thus, $\ln x=y \quad \Leftrightarrow \quad e^{y}=x$.)

Properties of the natural logarithms:

- $\ln \left(e^{x}\right)=$
- $e^{\ln x}=$
- $\ln e=$
- $\log _{a} x=\frac{\ln x}{\ln a}$, where $a>0$ and $a \neq 1$;
- $\lim _{x \rightarrow \infty} \ln x=$
- $\lim _{x \rightarrow 0^{+}} \ln x=$

EXAMPLE 3. Find each limit:
(a) $\lim _{x \rightarrow \infty} \ln \left(x^{2}-x\right)=$
(b) $\lim _{x \rightarrow 0^{+}} \log (\sin x)=$

EXAMPLE 4. Find the domain of $f(x)=\ln \left(x^{3}-x\right)$.

EXAMPLE 5. Solve the following equations:
(a) $\log _{0.5}(\log (x+120))=-1$
(b) $e^{5+2 x}=4$
(c) $\log (x-1)+\log (x+1)=\log 15$

EXAMPLE 6. Find the inverse of the following functions:
(a) $f(x)=\ln (x+12)$
(b) $f(x)=\frac{10^{x}-1}{10^{x}+1}$

Change of Base formula:

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

In particular,

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

EXAMPLE 7. Using calculator and the change-of-base formula evaluate $\log _{2} 15$ to four decimal places.
Solution.

$$
\log _{2} 15=\frac{\ln 15}{\ln 2} \approx 3.9069
$$

