4.8:Indeterminate forms and L'Hospital's Rule

Indeterminate forms: Consider

$$\lim_{x \to a} \frac{f(x)}{g(x)}.$$
(1)

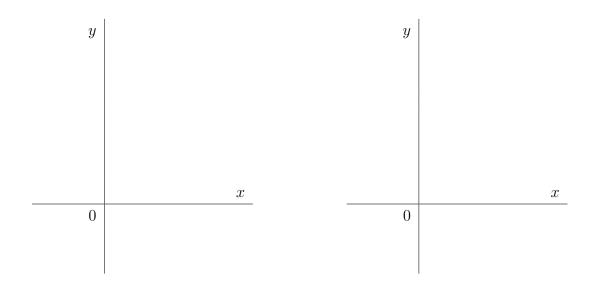
- If both f(x) → 0 and g(x) → 0 as x → a, then (1) is called an indeterminate form of type ⁰/₀.
- If both f(x) → ±∞ and g(x) → ±∞ as x → a, then (1) is called an indeterminate form of type [∞]/_∞.

EXAMPLES: $\lim_{x \to 0} \frac{\sin x}{x} = --, \quad \lim_{x \to 1} \frac{x - x^2}{x^2 - 1} = --, \quad \lim_{x \to \infty} \frac{\ln x}{x^3} = --,$

L'HOSPITAL'S RULE: Suppose f and g are differentiable and $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ or $\frac{\infty}{\infty}$ then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

if the limit on the right side exists (or is ∞ or $-\infty$).



EXAMPLE 1. Evaluate each of the following limits:

(a)
$$\lim_{x \to 0} \frac{\sin x}{x}$$

(b) $\lim_{x \to \infty} \frac{x^2}{e^x}$

(c)
$$\lim_{x \to 0} \frac{\sin x - x}{x^3}$$

Indeterminate form of type $0 \cdot \infty$: $\lim_{x \to a} f(x)g(x)$

Write the product fg as a quotient to get an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$:

EXAMPLE 2. Evaluate each of the following limits:

(a) $\lim_{x \to \infty} x \ln(1 + \frac{1}{x})$

(b) $\lim_{x\to-\infty} xe^x$

(c) $\lim_{x \to \pi/4} (1 - \tan x) \sec(2x)$

Indeterminate form of type $\infty - \infty$: $\lim_{x \to a} (f(x) - g(x))$

Try to convert the difference into a quotient to get an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

EXAMPLE 3. Find: $\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right)$

Indeterminate form of type 0^0 , ∞^0 , 1^∞ : $\lim_{x \to a} f(x)^{g(x)}$ Write the function as an exponential $0 \cdot \infty$. It leads to an indeterminate form of type $0 \cdot \infty$.

EXAMPLE 4. Find the following limits:

(a) $\lim_{x\to\infty} x^{\frac{1}{x}} =$

(b)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x =$$