5.2: Maximum and Minimum Values

DEFINITION 1. Let D be the domain of a function f.

- A function f has an absolute maximum (or global maximum) at x = c if $f(c) \ge f(x)$ for all x in D. In this case, we call f(c) the maximum value.
- A function f has an absolute minimum (or global minimum) at x = c if $f(c) \le f(x)$ for all x in D. In this case, we call f(c) the minimum value.

The maximum and minimum values of f on D are called the **extreme values** of f.

DEFINITION 2. A function f has a local maximum at x = c if $f(c) \ge f(x)$ when x is near c (i.e. in a neighborhood of c). A function f has a local minimum at x = c if $f(c) \le f(x)$ when x is near c.

EXAMPLE 3. Find the absolute and local extrema of f by sketching its graph:

(a) f	$(x) = x^2, \ -1 \le x$	$c \leq 3$						
	y					Local	Absolute	Value
					Maximum			
			x		Minimum			
-	0							
(b) $f(x) = x^2, \ -3 \le x \le 3$								
	y					Local	Absolute	Value
					Maximum			
					Minimum			
-			<i>x</i>		11101001100110			
	0							

DEFINITION 4. A critical number of f(x) is a number c is in the domain of f such that either f'(c) = 0 or f'(c) does not exist.

Illustration:

EXAMPLE 5. Find the critical numbers of f(x):

(a)
$$f(x) = x \ln x$$

(b)
$$f(x) = \left|4 - x^2\right|$$

Extreme Value Theorem: If f is a continuous function on a closed interval [a, b], then f attains both an absolute maximum and an absolute minimum.

EXAMPLE 6. Find the absolute extrema for $f(x) = x^3 - 3x^2 + 3x$ on the interval I where (a) I = [-1, 3]

(b)
$$I = [-1, 1]$$

(c)
$$I = [-1, 0]$$