5.2: Maximum and Minimum Values

DEFINITION 1. Let D be the domain of a function f.

- A function f has an absolute maximum (or global maximum) at $x=c$ if $f(c) \geq f(x)$ for all x in D. In this case, we call $f(c)$ the maximum value.
- A function f has an absolute minimum (or global minimum) at $x=c$ if $f(c) \leq f(x)$ for all x in D. In this case, we call $f(c)$ the minimum value.

The maximum and minimum values of f on D are called the extreme values of f.
DEFINITION 2. A function f has a local maximum at $x=c$ if $f(c) \geq f(x)$ when x is near c (i.e. in a neighborhood of c). A function f has a local minimum at $x=c$ if $f(c) \leq f(x)$ when x is near c.

EXAMPLE 3. Find the absolute and local extrema of f by sketching its graph:
(a) $f(x)=x^{2},-1 \leq x \leq 3$

	Local	Absolute	Value
Maximum			
Minimum			

(b) $f(x)=x^{2},-3 \leq x \leq 3$

	Local	Absolute	Value
Maximum			
Minimum			

(c) $f(x)=x^{2}$

	Local	Absolute	Value
Maximum			
Minimum			

(d) $f(x)=x^{3}$

	Local	Absolute	Value
Maximum			
Minimum			

(e) $f(x)=\frac{1}{x}, 0<x \leq 3$

	Local	Absolute	Value
Maximum			
Minimum			

(f) $f(x)=\left\{\begin{array}{lll}x^{4} & \text { if } & -1 \leq x<0 \\ 2-x^{4} & \text { if } & 0 \leq x \leq 1\end{array}\right.$

	Local	Absolute	Value
Maximum			
Minimum			

DEFINITION 4. A critical number of $f(x)$ is a number c is in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

Illustration:

EXAMPLE 5. Find the critical numbers of $f(x)$:
(a) $f(x)=x \ln x$
(b) $f(x)=\left|4-x^{2}\right|$

Extreme Value Theorem: If f is a continuous function on a closed interval $[a, b]$, then f attains both an absolute maximum and an absolute minimum.

EXAMPLE 6. Find the absolute extrema for $f(x)=x^{3}-3 x^{2}+3 x$ on the interval I where
(a) $I=[-1,3]$
(b) $I=[-1,1]$
(c) $I=[-1,0]$

