6.1: Sigma notation

DEFINITION 1. If $a_m, a_{m+1}, a_{m+2}, ..., a_n$ are real numbers and m and n are integers such that $m \leq n$,

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + a_{m+2} + \dots + a_n.$$

EXAMPLE 2. Compute the summation

$$\sum_{i=1}^{4} \frac{(-1)^k}{k}$$

EXAMPLE 3. Write the sum in sigma notation: $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}$

$$1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}$$

THEOREM 4. If c is any constant then
$$\sum_{i=m}^{n} ca_i = c \sum_{i=m}^{n} a_i$$

$$\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} a_i + \sum_{i=m}^{n} b_i$$

$$\sum_{i=m}^{n} (a_i - b_i) = \sum_{i=m}^{n} a_i - \sum_{i=m}^{n} b_i$$

Note that in general
$$\sum_{i=1}^{n} a_i b_i \neq \left(\sum_{i=1}^{n} a_i\right) \cdot \left(\sum_{i=1}^{n} b_i\right).$$

THEOREM 5.

$$\bullet \sum_{i=1}^{n} 1 = n$$

•
$$\sum_{i=1}^{n} c = nc$$
, where c is a constant.

$$\bullet \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

•
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\bullet \sum_{i=1}^{n} i^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$$

EXAMPLE 6. Compute these sums:

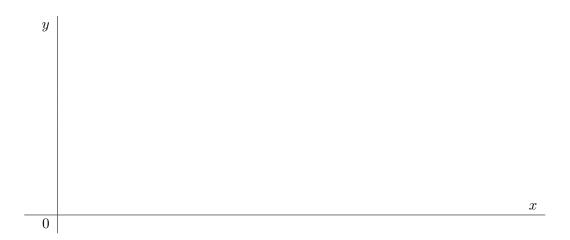
(a)
$$\sum_{i=1}^{n} i(i+4) =$$

(b)
$$\sum_{j=1}^{n} \left[\left(\frac{j}{n} \right)^3 + 1 \right] =$$

EXAMPLE 7. Find the limit:
$$\lim_{n\to\infty} \sum_{j=1}^{n} \frac{1}{n} \left[\left(\frac{j}{n} \right)^3 + 1 \right]$$

6.2: Area

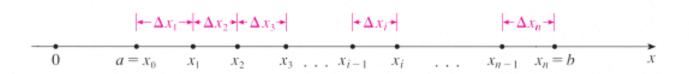
Area problem: Let a function f(x) be positive on some interval [a, b]. Determine the area of the region S between the function and the x-axis.



Solution: Choose **partition** points $x_0, x_2, \ldots, x_{n-1}, x_n$ so that

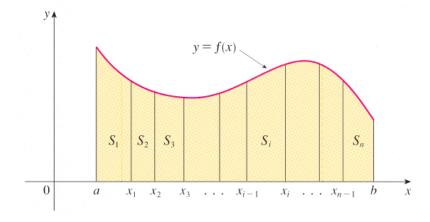
$$a = x_0 \le x_2 \le \ldots \le x_{n-1} \le x_n = b.$$

Use notation $\Delta x_i = x_i - x_{i-1}$ for the length of ith subinterval $[x_{i-1}, x_i]$ $(1 \le 1 \le n)$

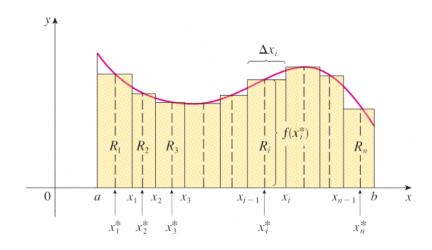


The length of the longest subinterval is denoted by ||P||.

Use the partition P to divide the region S into strips S_1, S_2, \ldots, S_n .



Approximate the strips S_1, S_2, \ldots, S_n by rectangles R_1, R_2, \ldots, R_n .



The location in each subinterval where we compute the height is denoted by x_i^* . The area of the *i*th rectangle is

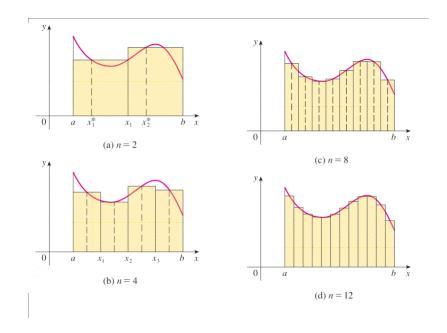
$$A_i =$$

Then

$$A \approx$$

The area A of the region is:

$$A =$$

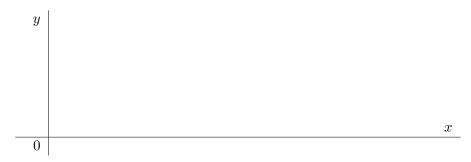


Riemann Sum for a function f(x) on the interval [a,b] is a sum of the form:

$$\sum_{i=1}^{n} f(x_i^*) \Delta x_i.$$

Consider a partition has equal subintervals: $x_i = a + i\Delta x$, where $\Delta x = \frac{b-a}{n}$.

LEFT-HAND RIEMANN SUM: $L_n = \sum_{i=1}^n f(x_{i-1}) \Delta x = \sum_{i=1}^n f(a + (i-1)\Delta x) \Delta x$



RIGHT-HAND RIEMANN SUM : $R_n = \sum_{i=1}^n f(x_i) \Delta x = \sum_{i=1}^n f(a+i\Delta x) \Delta x$

MIDPOINT RIEMANN SUM: $M_n = \sum_{i=1}^n f\left(\frac{x_i + x_{i-1}}{2}\right) \Delta x$

EXAMPLE 8. Given $f(x) = x^3 + 1$ on [0, 1].

(a) Calculate L_2, R_2, M_2 .

(b) Represent area bounded by $f(x) = x^3 + 1$ on the interval [0,1] using right endpoints by Riemann sum.

(c) Find the area bounded by $f(x) = x^3 + 1$ on the interval [0,1].

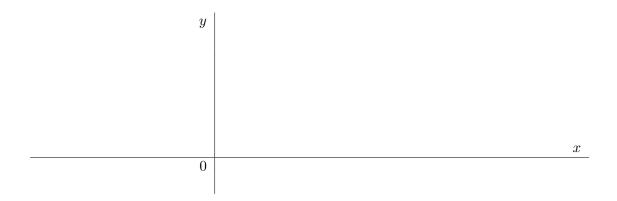
6.3: The Definite Integral

DEFINITION 9. The definite integral of f from a to b is

$$\int_a^b f(x) \, \mathrm{d}x = \lim_{\|P\| \to 0} \sum_{i=1}^n f(x_i^*) \Delta x_i$$

if this limit exists. If the limit does exist, then f is called **integrable** on the interval [a, b].

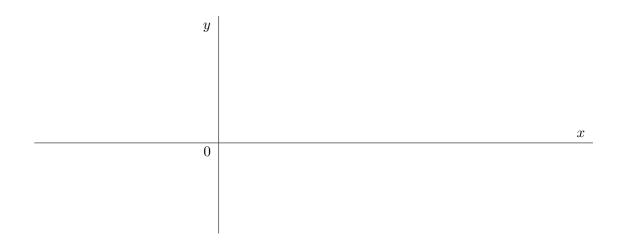
If f(x) > 0 on the interval [a, b], then the definite integral is the area bounded by the function f and the lines y = 0, x = a and x = b.



In general, a definite integral can be interpreted as a difference of areas:

$$\int_a^b f(x) \, \mathrm{d}x = A_1 - A_2$$

where A_1 is the area of the region above the x and below the graph of f and A_2 is the area of the region below the x and above the graph of f.



EXAMPLE 10. Evaluate the integrals by $\int_{-1}^{3} (2-x) dx$ interpreting it in terms of areas.

Properties of Definite Integrals:

$$\bullet \int_a^b \mathrm{d}x = b - a$$

•
$$\int_a^b f(x) \pm g(x) \, \mathrm{d}x = \int_a^b f(x) \, \mathrm{d}x \pm \int_a^b g(x) \, \mathrm{d}x$$

•
$$\int_a^b cf(x) dx = c \int_a^b f(x) dx$$
, where c is any constant

•
$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$
, where $a \le c \le b$

$$\bullet \int_a^b f(x) \, \mathrm{d}x = -\int_b^a f(x) \, \mathrm{d}x$$

$$\bullet \int_a^a f(x) \, \mathrm{d}x = 0$$

• If
$$f(x) \ge 0$$
 for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$

• If
$$f(x) \ge g(x)$$
 for $a \le x \le b$, then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$

• If
$$m \le f(x) \le M$$
 for $a \le x \le b$, then $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$.

EXAMPLE 11. Write as a single integral:

$$\int_{3}^{5} f(x) dx + \int_{0}^{3} f(x) dx - \int_{6}^{5} f(x) dx + \int_{5}^{5} f(x) dx$$

EXAMPLE 12. Estimate the value of
$$\int_0^{\pi} (4\sin^5 x + 3) dx$$

6.4: The fundamental Theorem of Calculus

The fundamental Theorem of Calculus :

PART I If f(x) is continuous on [a,b] then $g(x) = \int_a^x f(t) dt$ is continuous on [a,b] and differentiable on (a,b) and g'(x) = f(x).

EXAMPLE 13. Differentiate $g(x) = \int_{-4}^{x} e^{2t} \cos^2(1-5t) dt$

THEOREM 14. Let u(x) be a differentiable function and f(x) be a continuous one. Then

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{a}^{u(x)} f(t) \, \mathrm{d}t \right) = f(u(x))u'(x).$$

EXAMPLE 15. Differentiate $g(x) = \int_{-4}^{x^3} e^{2t} \cos^2(1-5t) dt$.

PART II If f(x) is continuous on [a,b] and F(x) is any antiderivative fort f(x) then

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(x) \, \Big|_{a}^{b} = F(b) - F(a).$$

EXAMPLE 16. Evaluate

(a)
$$\int_{-\pi/2}^{0} (\cos x - 4\sin x) \, \mathrm{d}x$$

(b)
$$\int_{1}^{5} \frac{1}{x^2} \, \mathrm{d}x$$

(c)
$$\int_0^1 (u^3 + 2)^2 du$$