(©Dr Oksana Shatalov, Fall 2014 1

1 Mathematical Reasoning

Prove: “For every odd integer n, the integer 3n+7 is even.”

1.1 Statements

DEFINITION 1. A statement is any declarative sentence that is either true or false.
A statement cannot be neither true nor false and it cannot be both true and false.
1. The integer 5 is odd.
2. The integer 24 is prime.
3. 15+7=22
4. Apple manufactures computers.
5. Apple manufactures the world’s best computers.
6. Did you buy IBM?

7. I am telling a lie.

An open sentence is any declarative sentence containing one or more variables that is not

a statement but becomes a statement when the variables are assigned values.

8. x4+5=7

9. He is a student.

10. 22 +9* =1
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Use quantifiers to transfer an open sentence to a statement.
Universal: Vx means for all/for every assigned value a of x.

Existential: 9x means that for some assigned vales a of x.

11. The area of a rectangle is its length times its width.

Quantifiers:

12. A triangle may be equilateral.

Quantifiers:

13. 15 —-5=10
Quantifiers:

14. The sum of an even integer and an odd integer is even.

Quantifiers:

15. All positive real numbers have a square root.

Quantifiers:

16. A real-valued function that is continuous at 0 is not necessarily differentiable at 0.

Quantifiers:
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NEGATIONS

DEFINITION 2. If P is a statement, then the negation of P, written =P (read “not P”),

1s the statement “P 1is false”.

17. All continuous functions are differentiable.

18. P: Barack Obama won the Nobel Peace Prize.

19. P: 53=120 -P:

20. P(z): 2*+2+1=0 -P(x):

21. P(z,y): a*+y*=0 —P(z,y) :

22. P:If nis an odd integer then 3n + 7 is odd.

-P

23. P : Every car on the parking lot #47 was with valid permit.

-P

24. P :There exist real numbers a and b such that (a + b)? = a® + b%.

-P

Rules to negate statements with quantifiers:
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25. P : For every even integer n there exists an integer m such that n = 2m.

-P

26. P : There exists a positive integer n such that m(n + 5) < 1 for every integer m.

-P

EXAMPLE 3. P: Ifn is an integer and n* is a multiple of 4 then n is a multiple of 4.

Question: Is the following “proof” valid?
Let n = 6. Then n? = 62 = 36 and 36 is a multiple of 4, but 6 is not a multiple of 4. Therefore,

the statement P is FALSE.(J

1.2 Compound Statements

1. P: Some math tests are long.

2. @: Some math tests are difficult.

Logical connectivity | write | read meaning
Conjunction PAQ | P and @) | Both P and (@) are true
Disjunction PvQ | Por ) | P istrue or () is true
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TRUTH TABLES

P: Ben is a student.

(2: Ben is a teaching assistant.

P Q | PANQ|QAP | PVQ|QVP

EXAMPLE 4. Rewrite the following open statements using disjunction or conjunction.

(a) P: |z| > 10.

(b) P: x| < 10.

DEFINITION 5. We say that two compound statements are logically equivalent (write “=7) if

they have the same truth tables, which means they both are true or both are false.

EXAMPLE 6. Let P and Q be statement forms. Determine whether the compound statements
P AQ and =PV Q are logically equivalent (i.e. both true or both false).

Pl Q
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Some Fundamental Properties of Logical Equivalence

THEOREM 7. For the statement forms P, Q) and R,
[ —|<—|P) =

o Commutative Laws
PvQ=
PAQ=

e Associative Laws
PV (QVR)=
PA(QAR)=

o Distributive Laws
PV(QAR)=
PA(QVR)=

e De Morgan’s Laws
~(PVQ)=(=P)A(-Q)
~(PAQ) = (=P)V (-Q)

Proof. Each part of the theorem is verified by means of a truth table.
Pl @

EXAMPLE 8. Rewrite the rules to negate statements with quantifiers in terms of logical equiv-

alence:
—(Vz, P(z)) =

—(3z > P(x)) =

=(Vz, (P(x) v Q(x))
=(Va, (P(x) A Q(x))

—(3z 3 (P(z) vV Q(z))

—(3z 3 (P(z) A Q(x))
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EXAMPLE 9. Negate:

P: There exists a prime number p which is greater then 7 and less than 10.

-P

Tautologies and Contradictions

Tautology: statement that is always true

Contradiction: statement that is always false

P| -P | PV(=P)|PA(=P)
T
F

1.3 Implications

DEFINITION 10. Let P and Q be statements. The implication P = @ (read “P implies Q")

is the statement “If P is true, then Q is true.”

EXAMPLE 11. Ifn is odd, then 3n + 7 is even.

PIQ|P=Q
T T T
The truth table for implication: T|F F
F|T T
F|F T

EXAMPLE 12. P: You earn an A on the final exam.
Q: You get an A for your final grade.

P=qQ

Different ways of expressing P = Q) :

If P is true, then @ is true
Q@ is true if P is true
P implies @)
P is true only if () is true
P is sufficient for @)

@ is necessary for P.
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EXAMPLE 13. For a triangle T, let
P(T) : T is equilateral Q(T): T is isosceles.
State P(T) = Q(T') in a variety of ways:

EXAMPLE 14. P : The function f(z) = sinx is differentiable everywhere.

Q: The function f(x) = sinz is continuous everywhere.

P=qQ Q=P
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Proving Statements Containing Implications.

Properties of Integers:
1. The negative of every integer is an integer.
2. The sum (and difference) of every two integers is an integer.

3. The product of every two integers is an integer.

e DIRECT PROOF

— Assume that P is true.
— Draw out consequences of P.

— Use these consequences to prove () is true.

EXAMPLE 15. If n is an even integer, then 5n° is an even integer.

EXAMPLE 16. Evaluate the proposed proof of the following result:

If a is an even integer and b is an odd integer, then 3a — 5b is odd.

Proof. Let a be an even integer and b be an odd integer. Then a = 2n and b = 2n + 1 for

some integer n. Therefore,
3a—5b=3(2n)—-52n+1)=6n—10n—5=—4n—-5=2(—2n—2) — 1.

Since —2n — 2 is an integer, 3a — 5b is odd. [J
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EXAMPLE 17. The sum of every two odd integers is even.

EXAMPLE 18. Let x be an integer. If 5x — 7 is odd, then 9x + 2 is even.

10
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e PROOF BY CASES

EXAMPLE 19. If n is an integer, then n® + 3n + 4 is an even integer.

Hint: Use the following fact: “FEwvery integer number is either even. or odd.”

11
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Negating an implication: Counterexamples

~(P=Q)=PA(-Q)

REMARK 20. The negation of an implication is not an implication!

EXAMPLE 21. Negate the statement: “For all z, P(z) = Q(x).”

The value assigned to the variable x that makes P(z) true and @Q(z) false is called a coun-

terexample to the statement “For allz, P(z) = Q(z).”

EXAMPLE 22. Disprove the following statement:

If a real-valued function is continuous at some point, then this function is differentiable there.
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Necessary and Sufficient Conditions

P = (@) can be expressed as

P is sufficient for ().
or

@ is necessary for P.

Equivalently,

In order for @) to be true it is sufficient that P be true.
or

() must be true in order to P to be true.

EXAMPLE 23. Consider the following open sentences
P(x): x is a multiple of 4. Q(x) : z is even. Complete:

o “Vx,P(z)= Q(z)” is

o P(x)isa condition for @ to be true.
e Q(z) is a condition for P(x) to be true.
e Q(x) is not a condition for P(x) to be true.

EXAMPLE 24. Consider the following open sentences
P(f): fis a differentiable function.

Q(f) : f is a continuous function.

Complete:

o Vi P(f)=Q(f)" is
o “Vf,Q(f)= P(f)" is

e Q(f)isa condition for [ to be differentiable, but not a
condition.
e P(f)isa condition for f to be continuous.

REMARK 25. Note however, if P = @) is true, then it is not necessary that P is true in order
for Q) to be true. Even if @) is true, P may be false.
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1.4 Contrapositive and Converse
Contrapositive

DEFINITION 26. The statement —~(Q) = —P 1is called the contrapositive of the statement
P=Q.

EXAMPLE 27. Let P and QQ be statement forms. Prove that -~Q = —P is logically equivalent
to P= Q.

PlQ[P=Q[-Q[-P|-Q=-P

Methods to prove an implication P = @) (continued)

¢ CONTRAPOSITIVE PROOF (based on the equivalence (P = Q) = (-Q = —P))

— Assume that =@ is true.
— Draw out consequences of —().
— Use these consequences to prove =P is true.

— It follows that P = Q.

REMARK 28. If you use a contrapositive method, you must declare it in the beginning
and then state what is sufficient to proof.

EXAMPLE 29. Let x be an integer. If bx — 7 is even, then x is odd.
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Converse
DEFINITION 30. The statement (Q = P s called a converse of the statement P = ().
Question: Are the statements P = () and () = P logically equivalent?

EXAMPLE 31. If m and n are odd integers then m + n is even.

Biconditional “&”

DEFINITION 32. The statement P < Q (or P iff Q) is the statement (P = Q) A (Q = P).

P P=Q Q=P | P&Q

ST
SIS

THEOREM 33. Let @ and b be two non zero vectors. Then @ is orthogonal to b iff a- b= 0.
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THEOREM 34. Let n be an integer. Then n is even if and only if n? is even.

Proof.

REMARK 35. (P < Q) = (=P & —Q)

COROLLARY 36. Let n be an integer. Then n is odd iff n? is odd.

16
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Methods to prove an implication P = @ (continued)

EXAMPLE 37. Let S and C be statement forms. Prove that =S = (C A =C) is logically

equivalent to S.

e PROOF BY CONTRADICTION

Assume that P is true.

— To derive a contradiction, assume that —() is true.

Prove a false statement C, using negation ~(P = Q) = (P A =Q).

Prove =C'. It follows that @ is true. (The statement C' A =C must be false, i.e. a

contradiction.)

PROPOSITION 38. If m and n are integers, then m?* — 4n # 2.

Proof.
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PROPOSITION 39. Let be a,b, and c be integers. If a®> +b* = c? then a or b is an even integer.

Proof.
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DEFINITION 40. A real number x is rational if x = * for some integer numbers m and n.

Also, x is irrational if it is not rational, that is

PROPOSITION 41. The number \/2 is irrational.



