1 Mathematical Reasoning

Prove: "For every odd integer n, the integer $3 n+7$ is even."

1.1 Statements

DEFINITION 1. A statement is any declarative sentence that is either true or false.
A statement cannot be neither true nor false and it cannot be both true and false.

1. The integer 5 is odd.
2. The integer 24 is prime.
3. $15+7=22$
4. Apple manufactures computers.
5. Apple manufactures the world's best computers.
6. Did you buy IBM?
7. I am telling a lie.
8. What happen when Pinocchio says: "My nose will grow now"?

An open sentence is any declarative sentence containing one or more variables that is not a statement but becomes a statement when the variables are assigned values.
9. $x+5=7$
10. He is a student.
11. $x^{2}+y^{2}=1$

An open sentence can be made into a statement by using quantifiers.
Universal: $\forall x$ means for all/for every assigned value a of x.
Existential: $\exists x$ means that for some assigned vales a of x.
Once a quantifier is applied to a variable, then the variable is called a bound variable. The variable that is not bound is called a free variable.
12. For every real number $x, x+5=7$.

Quantifiers:
13. The area of a rectangle is its length times its width.

Quantifiers:
\qquad
14. A triangle may be equilateral.

Quantifiers:
15. $15-5=10$

Quantifiers:
16. The sum of an even integer and an odd integer is even.

Quantifiers:
\qquad
17. All positive real numbers have a square root.

Quantifiers:
\qquad
18. A real-valued function that is continuous at 0 is not necessarily differentiable at 0 . Quantifiers:

NEGATIONS

DEFINITION 2. If P is a statement, then the negation of P, written $\neg P$ (read "not P "), is the statement " P is false".
19. All continuous functions are differentiable.
20. P: Barack Obama won the Nobel Peace Prize.
21. $P: \quad 5^{3}=120 \quad \neg P:$ \qquad
22. $P(x): x^{2}+x+1=0 \quad \neg P(x):$ \qquad
23. $P(x, y): \quad x^{4}+y^{4}=0 \quad \neg P(x, y):$ \qquad
24. P : If n is an odd integer then $3 n+7$ is odd.
$\neg P$
25. P : Every car on the parking lot $\# 47$ was with valid permit.
$\neg P$
26. P :There exist real numbers a and b such that $(a+b)^{2}=a^{2}+b^{2}$.
$\neg P$

Rules to negate statements with quantifiers:
27. P : For every even integer n there exists an integer m such that $n=2 m$.
$\neg P$
28. P : There exists a positive integer n such that $m(n+5)<1$ for every integer m.
$\neg P$
EXAMPLE 3. P : If n is an integer and n^{2} is a multiple of 4 then n is a multiple of 4. Question: Is the following "proof" valid?
Let $n=6$. Then $n^{2}=6^{2}=36$ and 36 is a multiple of 4 , but 6 is not a multiple of 4 . Therefore, the statement P is FALSE.

1.2 Compound Statements

1. P : Some math tests are long.
2. Q : Some math tests are difficult.

Logical connectivity	write	read	meaning
Conjunction	$\mathrm{P} \wedge Q$	P and Q	Both P and Q are true
Disjunction	$\mathrm{P} \vee Q$	P or Q	P is true or Q is true

TRUTH TABLES

$P:$ Ben is a student.
Q : Ben is a teaching assistant.

P	Q	$P \wedge Q$	$Q \wedge P$	$P \vee Q$	$Q \vee P$

EXAMPLE 4. Rewrite the following open statements using disjunction or conjunction.
(a) $P(x): \quad|x| \geq 10$.
(b) $P(x): \quad|x|<10$.

Two compound statements are logically equivalent (write " \equiv ") if they have the same truth tables, which means they both are true or both are false.

EXAMPLE 5. Let P and Q be statement forms. Determine whether the compound statements $\neg P \wedge Q$ and $\neg P \vee Q$ are logically equivalent (i.e. both true or both false).

P	Q			

Some Fundamental Properties of Logical Equivalence

THEOREM 6. For the statement forms P, Q and R,

- $\neg(\neg P) \equiv$
- Commutative Laws
$P \vee Q \equiv$
$P \wedge Q \equiv$
- Associative Laws
$P \vee(Q \vee R) \equiv$
$P \wedge(Q \wedge R) \equiv$
- Distributive Laws
$P \vee(Q \wedge R) \equiv$
$P \wedge(Q \vee R) \equiv$
- De Morgan's Laws
$\neg(P \vee Q) \equiv(\neg P) \wedge(\neg Q)$
$\neg(P \wedge Q) \equiv(\neg P) \vee(\neg Q)$
Proof. Each part of the theorem is verified by means of a truth table.

P	Q					

EXAMPLE 7. Rewrite the rules to negate statements with quantifiers in terms of logical equivalence:

$$
\begin{aligned}
& \neg(\forall x, P(x)) \equiv \\
& \neg(\exists x \ni P(x)) \equiv \\
& \neg(\forall x,(P(x) \vee Q(x)) \equiv \\
& \neg(\forall x,(P(x) \wedge Q(x)) \equiv \\
& \neg(\exists x \ni(P(x) \vee Q(x)) \equiv \\
& \neg(\exists x \ni(P(x) \wedge Q(x)) \equiv
\end{aligned}
$$

EXAMPLE 8. Negate:
P : There exists a prime number p which is greater then 7 and less than 10.
$\neg P$

Tautologies and Contradictions

Tautology: statement that is always true
Contradiction: statement that is always false

P	$\neg P$	$P \vee(\neg P)$	$P \wedge(\neg P)$
T			
F			

1.3 Implications

DEFINITION 9. Let P and Q be statements. The implication $P \Rightarrow Q$ (read " P implies Q ") is the statement "If P is true, then Q is true."

EXAMPLE 10. If n is odd, then $3 n+7$ is even.

The truth table for implication:

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

EXAMPLE 11. P : You earn an A on the final exam.
Q : You get an A for your final grade.
$P \Rightarrow Q$

Different ways of expressing $P \Rightarrow Q$:
If P is true, then Q is true Q is true if P is true
P implies Q
P is true only if Q is true
P is sufficient for Q
Q is necessary for P.

EXAMPLE 12. For a triangle T, let
$P(T): T$ is equilateral $\quad Q(T): T$ is isosceles.
State $P(T) \Rightarrow Q(T)$ in a variety of ways:

EXAMPLE 13. P : The function $f(x)=\sin x$ is differentiable everywhere. Q : The function $f(x)=\sin x$ is continuous everywhere.
$P \Rightarrow Q$
$Q \Rightarrow P$

Proving Statements Containing Implications.

Properties of Integers:
FACT 1 The negative of every integer is an integer.
FACT 2 The sum (and difference) of every two integers is an integer.
FACT 3 The product of every two integers is an integer.
FACT 4 Every integer is either even, or odd.

- DIRECT PROOF

- Assume that P is true.
- Draw out consequences of P.
- Use these consequences to prove Q is true.

EXAMPLE 14. If n is an even integer, then $5 n^{5}$ is an even integer.

EXAMPLE 15. Evaluate the proposed proof of the following result: If a is an even integer and b is an odd integer, then $3 a-5 b$ is odd.

Proof. Let a be an even integer and b be an odd integer. Then $a=2 n$ and $b=2 n+1$ for some integer n. Therefore,

$$
3 a-5 b=3(2 n)-5(2 n+1)=6 n-10 n-5=-4 n-5=2(-2 n-2)-1
$$

Since $-2 n-2$ is an integer, $3 a-5 b$ is odd.

EXAMPLE 16. The sum of every two odd integers is even.

EXAMPLE 17. Let x be an integer. If $5 x-7$ is odd, then $9 x+2$ is even.

- PROOF BY CASES

EXAMPLE 18. If n is an integer, then $n^{2}+3 n+4$ is an even integer.

Hint: Use the following fact: "Every integer number is either even. or odd."

Negating an implication: Counterexamples

$$
\neg(P \Rightarrow Q) \equiv P \wedge(\neg Q)
$$

REMARK 19. The negation of an implication is not an implication!
EXAMPLE 20. Negate the statement: "For all $x, P(x) \Rightarrow Q(x)$."

The value assigned to the variable x that makes $P(x)$ true and $Q(x)$ false is called a counterexample to the statement "For all $x, P(x) \Rightarrow Q(x)$."

EXAMPLE 21. Disprove the following statement:
If a real-valued function is continuous at some point, then this function is differentiable there.

Necessary and Sufficient Conditions

$P \Rightarrow Q$ can be expressed as

$$
\begin{aligned}
& P \text { is sufficient for } Q \text {. } \\
& \text { or } \\
& Q \text { is necessary for } P \text {. }
\end{aligned}
$$

Equivalently,
In order for Q to be true it is sufficient that P be true.
or
Q must be true in order to P to be true.
EXAMPLE 22. Consider the following open sentences
$P(x): x$ is a multiple of $4 . \quad Q(x): x$ is even. Complete:

- " $\forall x, P(x) \Rightarrow Q(x)$ " is \qquad .
- $P(x)$ is a \qquad condition for Q to be true.
- $Q(x)$ is a \qquad condition for $P(x)$ to be true.
- $Q(x)$ is not a \qquad condition for $P(x)$ to be true.

EXAMPLE 23. Consider the following open sentences
$P(f): f$ is a differentiable function.
$Q(f): f$ is a continuous function.
Complete:

- " $\forall f, P(f) \Rightarrow Q(f) "$ is \qquad .
- " $\forall f, Q(f) \Rightarrow P(f) "$ is \qquad .
- $Q(f)$ is a \qquad condition for f to be differentiable, but not a condition.
- $P(f)$ is a \qquad condition for f to be continuous.

REMARK 24. Note however, if $P \Rightarrow Q$ is true, then it is not necessary that P is true in order for Q to be true. Even if Q is true, P may be false.

1.4 Contrapositive and Converse

Contrapositive

DEFINITION 25. The statement $\neg Q \Rightarrow \neg P$ is called the contrapositive of the statement $P \Rightarrow Q$.

EXAMPLE 26. Let P and Q be statement forms. Prove that $\neg Q \Rightarrow \neg P$ is logically equivalent to $P \Rightarrow Q$.

P	Q	$P \Rightarrow Q$	$\neg Q$	$\neg P$	$\neg Q \Rightarrow \neg P$

Methods to prove an implication $P \Rightarrow Q$ (continued)

- CONTRAPOSITIVE PROOF (based on the equivalence $(P \Rightarrow Q) \equiv(\neg Q \Rightarrow \neg P))$
- Assume that $\neg Q$ is true.
- Draw out consequences of $\neg Q$.
- Use these consequences to prove $\neg P$ is true.
- It follows that $P \Rightarrow Q$.

REMARK 27. If you use a contrapositive method, you must declare it in the beginning and then state what is sufficient to proof.

EXAMPLE 28. Let x be an integer. If $5 x-7$ is even, then x is odd.

Converse

DEFINITION 29. The statement $Q \Rightarrow P$ is called a converse of the statement $P \Rightarrow Q$.
Question: Are the statements $P \Rightarrow Q$ and $Q \Rightarrow P$ logically equivalent? \qquad
EXAMPLE 30. If m and n are odd integers then $m+n$ is even.

Biconditional " \Leftrightarrow "

DEFINITION 31. The statement $P \Leftrightarrow Q$ (or P iff Q) is the statement $(P \Rightarrow Q) \wedge(Q \Rightarrow P)$.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$P \Leftrightarrow Q$
T	T			
T	F			
F	T			
F	F			

THEOREM 32. Let \vec{a} and \vec{b} be two non zero vectors. Then \vec{a} is orthogonal to \vec{b} iff $\vec{a} \cdot \vec{b}=0$.

THEOREM 33. Let n be an integer. Then n is even if and only if n^{2} is even.
Proof.

REMARK 34. $(P \Leftrightarrow Q) \equiv(\neg P \Leftrightarrow \neg Q)$
COROLLARY 35. Let n be an integer. Then n is odd iff n^{2} is odd.

Methods to prove an implication $P \Rightarrow Q$ (continued)
EXAMPLE 36. Let S and C be statement forms. Prove that $\neg S \Rightarrow(C \wedge \neg C)$ is logically equivalent to S.

- PROOF BY CONTRADICTION

- Assume that P is true.
- To derive a contradiction, assume that $\neg Q$ is true.
- Prove a false statement C, using negation $\neg(P \Rightarrow Q) \equiv(P \wedge \neg Q)$.
- Prove $\neg C$. It follows that Q is true. (The statement $C \wedge \neg C$ must be false, i.e. a contradiction.)

PROPOSITION 37. If m and n are integers, then $m^{2}-4 n \neq 2$.
Proof.

PROPOSITION 38. Let be a, b, and c be integers. If $a^{2}+b^{2}=c^{2}$ then a or b is an even integer. Proof.

DEFINITION 39. A real number x is rational if $x=\frac{m}{n}$ for some integer numbers m and n. Also, x is irrational if it is not rational, that is

PROPOSITION 40. The number $\sqrt{2}$ is irrational.

