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1 Mathematical Reasoning

Prove: “For every odd integer n, the integer 3n+7 is even.”

1.1 Statements

DEFINITION 1. A statement is any declarative sentence that is either true or false.

A statement cannot be neither true nor false and it cannot be both true and false.

1. The integer 5 is odd.

2. The integer 24 is prime.

3. 15 + 7 = 22

4. Apple manufactures computers.

5. Apple manufactures the world’s best computers.

6. Did you buy IBM?

7. I am telling a lie.

8. What happen when Pinocchio says: “My nose will grow now”?

An open sentence is any declarative sentence containing one or more variables that is not

a statement but becomes a statement when the variables are assigned values.

9. x + 5 = 7

10. He is a student.

11. x2 + y2 = 1
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An open sentence can be made into a statement by using quantifiers.

Universal : ∀x means for all/for every assigned value a of x.

Existential : ∃x means that for some assigned vales a of x.

Once a quantifier is applied to a variable, then the variable is called a bound variable. The

variable that is not bound is called a free variable.

12. For every real number x, x + 5 = 7.

Quantifiers:

13. The area of a rectangle is its length times its width.

Quantifiers:

14. A triangle may be equilateral.

Quantifiers:

15. 15− 5 = 10

Quantifiers:

16. The sum of an even integer and an odd integer is even.

Quantifiers:

17. All positive real numbers have a square root.

Quantifiers:

18. A real-valued function that is continuous at 0 is not necessarily differentiable at 0.

Quantifiers:
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NEGATIONS

DEFINITION 2. If P is a statement, then the negation of P , written ¬P (read “not P”),

is the statement “P is false”.

19. All continuous functions are differentiable.

20. P : Barack Obama won the Nobel Peace Prize.

21. P : 53 = 120 ¬P :

22. P (x) : x2 + x + 1 = 0 ¬P (x) :

23. P (x, y) : x4 + y4 = 0 ¬P (x, y) :

24. P : If n is an odd integer then 3n + 7 is odd.

¬P

25. P : Every car on the parking lot #47 was with valid permit.

¬P

26. P :There exist real numbers a and b such that (a + b)2 = a2 + b2.

¬P

Rules to negate statements with quantifiers:
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27. P : For every even integer n there exists an integer m such that n = 2m.

¬P

28. P : There exists a positive integer n such that m(n + 5) < 1 for every integer m.

¬P

EXAMPLE 3. P : If n is an integer and n2 is a multiple of 4 then n is a multiple of 4.

Question: Is the following “proof” valid?

Let n = 6. Then n2 = 62 = 36 and 36 is a multiple of 4, but 6 is not a multiple of 4. Therefore,

the statement P is FALSE.�

1.2 Compound Statements

1. P : Some math tests are long.

2. Q: Some math tests are difficult.

Logical connectivity write read meaning

Conjunction P∧Q P and Q Both P and Q are true

Disjunction P∨Q P or Q P is true or Q is true
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TRUTH TABLES

P : Ben is a student.

Q: Ben is a teaching assistant.

P Q P ∧Q Q ∧ P P ∨Q Q ∨ P

EXAMPLE 4. Rewrite the following open statements using disjunction or conjunction.

(a) P (x) : |x| ≥ 10.

(b) P (x) : |x| < 10.

Two compound statements are logically equivalent (write “≡”) if they have the same truth

tables, which means they both are true or both are false.

EXAMPLE 5. Let P and Q be statement forms. Determine whether the compound statements

¬P ∧Q and ¬P ∨Q are logically equivalent (i.e. both true or both false).

P Q
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Some Fundamental Properties of Logical Equivalence

THEOREM 6. For the statement forms P , Q and R,

• ¬(¬P ) ≡

• Commutative Laws

P ∨Q ≡
P ∧Q ≡

• Associative Laws

P ∨ (Q ∨R) ≡
P ∧ (Q ∧R) ≡

• Distributive Laws

P ∨ (Q ∧R) ≡
P ∧ (Q ∨R) ≡

• De Morgan’s Laws

¬(P ∨Q) ≡ (¬P ) ∧ (¬Q)

¬(P ∧Q) ≡ (¬P ) ∨ (¬Q)

Proof. Each part of the theorem is verified by means of a truth table.

P Q

EXAMPLE 7. Rewrite the rules to negate statements with quantifiers in terms of logical equiv-

alence:

¬(∀x, P (x)) ≡

¬(∃x 3 P (x)) ≡

¬(∀x, (P (x) ∨Q(x)) ≡

¬(∀x, (P (x) ∧Q(x)) ≡

¬(∃x 3 (P (x) ∨Q(x)) ≡

¬(∃x 3 (P (x) ∧Q(x)) ≡
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EXAMPLE 8. Negate:

P : There exists a prime number p which is greater then 7 and less than 10.

¬P

Tautologies and Contradictions

Tautology: statement that is always true

Contradiction: statement that is always false

P ¬P P ∨ (¬P ) P ∧ (¬P )

T

F

1.3 Implications

DEFINITION 9. Let P and Q be statements. The implication P ⇒ Q (read “P implies Q”)

is the statement “If P is true, then Q is true.”

EXAMPLE 10. If n is odd, then 3n + 7 is even.

The truth table for implication:

P Q P ⇒ Q

T T T

T F F

F T T

F F T

EXAMPLE 11. P : You earn an A on the final exam.

Q: You get an A for your final grade.

P ⇒ Q

Different ways of expressing P ⇒ Q :

If P is true, then Q is true

Q is true if P is true

P implies Q

P is true only if Q is true

P is sufficient for Q

Q is necessary for P .
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EXAMPLE 12. For a triangle T , let

P (T ) : T is equilateral Q(T ): T is isosceles.

State P (T )⇒ Q(T ) in a variety of ways:

EXAMPLE 13. P : The function f(x) = sin x is differentiable everywhere.

Q: The function f(x) = sinx is continuous everywhere.

P ⇒ Q Q⇒ P
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Proving Statements Containing Implications.

Properties of Integers:

FACT 1 The negative of every integer is an integer.

FACT 2 The sum (and difference) of every two integers is an integer.

FACT 3 The product of every two integers is an integer.

FACT 4 Every integer is either even, or odd.

• DIRECT PROOF

– Assume that P is true.

– Draw out consequences of P .

– Use these consequences to prove Q is true.

EXAMPLE 14. If n is an even integer, then 5n5 is an even integer.

EXAMPLE 15. Evaluate the proposed proof of the following result:

If a is an even integer and b is an odd integer, then 3a− 5b is odd.

Proof. Let a be an even integer and b be an odd integer. Then a = 2n and b = 2n + 1 for

some integer n. Therefore,

3a− 5b = 3(2n)− 5(2n + 1) = 6n− 10n− 5 = −4n− 5 = 2(−2n− 2)− 1.

Since −2n− 2 is an integer, 3a− 5b is odd. �
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EXAMPLE 16. The sum of every two odd integers is even.

EXAMPLE 17. Let x be an integer. If 5x− 7 is odd, then 9x + 2 is even.
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• PROOF BY CASES

EXAMPLE 18. If n is an integer, then n2 + 3n + 4 is an even integer.

Hint: Use the following fact: “Every integer number is either even. or odd.”
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Negating an implication: Counterexamples

¬(P ⇒ Q) ≡ P ∧ (¬Q)

REMARK 19. The negation of an implication is not an implication!

EXAMPLE 20. Negate the statement: “For all x, P (x)⇒ Q(x).”

The value assigned to the variable x that makes P (x) true and Q(x) false is called a coun-

terexample to the statement “For all x, P (x)⇒ Q(x).”

EXAMPLE 21. Disprove the following statement:

If a real-valued function is continuous at some point, then this function is differentiable there.
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Necessary and Sufficient Conditions

P ⇒ Q can be expressed as

P is sufficient for Q.

or

Q is necessary for P .

Equivalently,

In order for Q to be true it is sufficient that P be true.

or

Q must be true in order to P to be true.

EXAMPLE 22. Consider the following open sentences

P (x) : x is a multiple of 4. Q(x) : x is even. Complete:

• “ ∀x, P (x)⇒ Q(x)” is .

• P (x) is a condition for Q to be true.

• Q(x) is a condition for P (x) to be true.

• Q(x) is not a condition for P (x) to be true.

EXAMPLE 23. Consider the following open sentences

P (f) : f is a differentiable function.

Q(f) : f is a continuous function.

Complete:

• “ ∀f, P (f)⇒ Q(f)” is .

• “ ∀f,Q(f)⇒ P (f)” is .

• Q(f) is a condition for f to be differentiable, but not a

condition.

• P (f) is a condition for f to be continuous.

REMARK 24. Note however, if P ⇒ Q is true, then it is not necessary that P is true in order

for Q to be true. Even if Q is true, P may be false.
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1.4 Contrapositive and Converse

Contrapositive

DEFINITION 25. The statement ¬Q ⇒ ¬P is called the contrapositive of the statement

P ⇒ Q.

EXAMPLE 26. Let P and Q be statement forms. Prove that ¬Q ⇒ ¬P is logically equivalent

to P ⇒ Q.

P Q P ⇒ Q ¬Q ¬P ¬Q⇒ ¬P

Methods to prove an implication P ⇒ Q (continued)

• CONTRAPOSITIVE PROOF (based on the equivalence (P ⇒ Q) ≡ (¬Q⇒ ¬P ))

– Assume that ¬Q is true.

– Draw out consequences of ¬Q.

– Use these consequences to prove ¬P is true.

– It follows that P ⇒ Q.

REMARK 27. If you use a contrapositive method, you must declare it in the beginning

and then state what is sufficient to proof.

EXAMPLE 28. Let x be an integer. If 5x− 7 is even, then x is odd.
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Converse

DEFINITION 29. The statement Q⇒ P is called a converse of the statement P ⇒ Q.

Question: Are the statements P ⇒ Q and Q⇒ P logically equivalent?

EXAMPLE 30. If m and n are odd integers then m + n is even.

Biconditional “⇔”

DEFINITION 31. The statement P ⇔ Q (or P iff Q) is the statement (P ⇒ Q) ∧ (Q⇒ P ).

P Q P ⇒ Q Q⇒ P P ⇔ Q

T T

T F

F T

F F

THEOREM 32. Let ~a and ~b be two non zero vectors. Then ~a is orthogonal to ~b iff ~a ·~b = 0.
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THEOREM 33. Let n be an integer. Then n is even if and only if n2 is even.

Proof.

REMARK 34. (P ⇔ Q) ≡ (¬P ⇔ ¬Q)

COROLLARY 35. Let n be an integer. Then n is odd iff n2 is odd.
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Methods to prove an implication P ⇒ Q (continued)

EXAMPLE 36. Let S and C be statement forms. Prove that ¬S ⇒ (C ∧ ¬C) is logically

equivalent to S.

• PROOF BY CONTRADICTION

– Assume that P is true.

– To derive a contradiction, assume that ¬Q is true.

– Prove a false statement C, using negation ¬(P ⇒ Q) ≡ (P ∧ ¬Q).

– Prove ¬C. It follows that Q is true. (The statement C ∧ ¬C must be false, i.e. a

contradiction.)

PROPOSITION 37. If m and n are integers, then m2 − 4n 6= 2.

Proof.
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PROPOSITION 38. Let be a, b, and c be integers. If a2 + b2 = c2 then a or b is an even integer.

Proof.
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DEFINITION 39. A real number x is rational if x = m
n

for some integer numbers m and n.

Also, x is irrational if it is not rational, that is

PROPOSITION 40. The number
√

2 is irrational.


