Mathematical Reasoning (Part I) ${ }^{1}$

Statements

DEFINITION 1. A statement is any declarative sentence ${ }^{2}$ that is either true or false, but not both.

A statement cannot be neither true nor false and it cannot be both true and false.

1. The integer 5 is odd.
2. The integer 24277151704311 is prime.
3. $15+7=22$
4. Substitute the number 7 for x.
5. What is the derivative of $\cos x$?
6. Apple manufactures computers.
7. $|x|>7$
8. The absolute value of a real number x is greater than 7 .
9. The absolute value of a real number x is greater than 7 .
10. $x^{2} \geq 0$.
11. I am telling a lie.
12. What happen when Pinocchio says: "My nose will grow now"?

- Set Terminology and Notation (very short introduction ${ }^{3}$)

DEFINITIONS:

Set is a well-defined collection of objects.
Elements are objects or members of the set.

- Roster notation:

$A=\{a, b, c, d, e\} \operatorname{Read}:$ Set A with elements a, b, c, d, e.

- Indicating a pattern:

$B=\{a, b, c, \ldots, z\}$ Read: Set B with elements being the letters of the alphabet.
If a is an element of a set A, we write $a \in A$ that read " a belongs to A." However, if a does not belong to A, we write $a \notin A$.

[^0]
Some Number sets:

- \mathbf{R} is the set of all real numbers;
- $\mathbf{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$, the set of all integers;
- $\mathbf{Z}^{+}=\{1,2,3, \ldots\}$, the set of all positive integers;
- $\mathbf{N}=\{0,1,2,3, \ldots\}$, the set of all natural numbers;
- \mathbf{E} is the set of all even integers;
- \mathbf{O} is the set of all odd integers;
- $n \mathbf{Z}$ is the set of all integers multiples of $n(n \in \mathbf{Z})$;

An open sentence is any declarative sentence containing one or more variables, each variable representing a value in some prescribing set, called the domain of the variable, and which becomes a statement when values from their respective domains are substituted for these variables.

1. $P(x): x+5=7$
2. $P(n): n$ is divisible by 6 .

EXAMPLE 2. Discuss $P(x):(x-3)^{2} \leq 1$ over \mathbf{Z}.

EXAMPLE 3. Discuss $P(x, y): x^{2}+y^{2}=1$ when $x, y \in \mathbf{R}$.

The NEGATION of a Statement

DEFINITION 4. If P is a statement, then the negation of P, written $\neg P$ (read "not P "), is the statement " P is false".

Although $\neg P$ could always be expressed as It is not the case that P.
there are usually better ways to express the statement $\neg P$.

1. P : The integer 77 is even.
\qquad
\qquad
\qquad
2. $P: 5^{3}=120 \quad \neg P$: \qquad
3. P : The absolute value of the real number x is less than 5 .

Compound Statements

Logical connectivity	write	read	meaning
Conjunction	$\mathrm{P} \wedge Q$	P and Q	Both P and Q are true
Disjunction	$\mathrm{P} \vee Q$	P or Q	P is true or Q is true

$P:$ Ben is a student.
Q : Ben is a teaching assistant.

TRUTH TABLES

P	Q	$P \wedge Q$	$Q \wedge P$	$P \vee Q$	$Q \vee P$

EXAMPLE 5. Rewrite the following open sentences (over \mathbf{R}) using disjunction or conjunction.
(a) $P(x): \quad|x| \geq 10$.
(b) $P(x): \quad|x|<10$.
(c) $P(x): \quad|4 x+7| \geq 23$.

Implications

DEFINITION 6. Let P and Q be statements. The implication $P \Rightarrow Q$ (read " P implies Q ") is the statement "If P is true, then Q is true."

In implication $P \Rightarrow Q, P$ is called assumption, or hypothesis, or premise; and Q is called conclusion.

The truth table for implication:

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

EXAMPLE 7. P : You pass the final exam.
Q : You pass the course.
$P \Rightarrow Q:$

Alternative Expressions for $P \Rightarrow Q$. Necessary and Sufficient Conditions
If P, then $Q . \quad P$ implies $Q . \quad P$ only if $Q . \quad P$ is sufficient for Q. Q if $P . \quad Q$ when $P . \quad Q$ is necessary for P.

In order for Q to be true it is sufficient that P be true.
or
Q must be true in order to P to be true.
REMARK 8. Note however, if $P \Rightarrow Q$ is true, then it is not necessary that P is true in order for Q to be true. Even if Q is true, P may be false.

Converse

DEFINITION 9. The statement $Q \Rightarrow P$ is called a converse of the statement $P \Rightarrow Q$.
EXAMPLE 10. State the converse statement for implication in Example 7.

EXAMPLE 11. P : The function $f(x)=\sin x$ is differentiable everywhere.
Q : The function $f(x)=\sin x$ is continuous everywhere.

$$
P \Rightarrow Q \quad Q \Rightarrow P
$$

Biconditional " \Leftrightarrow "

For statements P and Q,

$$
(P \Rightarrow Q) \wedge(Q \Rightarrow P)
$$

is called the biconditional of P and Q and is denoted by $P \Leftrightarrow Q$. The biconditional $P \Leftrightarrow Q$ is stated as
" P is equivalent to Q." or " P if and only if Q." (or " P iff Q.")
or as " P is a necessary and sufficient condition for Q."

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$P \Leftrightarrow Q$
T	T			
T	F			
F	T			
F	F			

EXAMPLE 12. Complete:
(a) The biconditional "The number 17 is odd if and only if 57 is prime." is \qquad .
(a) The biconditional "The number 24 is even if and only if 17 is prime." is \qquad .
(a) The biconditional "The number 17 is even if and only if 24 is prime." is \qquad .

Tautologies and Contradictions

Tautology: statement that is always true
Contradiction: statement that is always false

P	$\neg P$	$P \vee(\neg P)$	$P \wedge(\neg P)$
T			
F			

Methods to verify tautology/contradiction: truth table and deductive proof.
EXAMPLE 13. Determine whether the following formula for the statements P and Q is a tautology, contradiction, or neither.

$$
\neg(P \Rightarrow Q) \Leftrightarrow P \wedge(\neg Q)
$$

Logical Equivalence

DEFINITION 14. Two compound statements are logically equivalent (write " \equiv ") if they have the same truth tables, which means they both are true or both are false.

Question: Are the statements $P \Rightarrow Q$ and $Q \Rightarrow P$ logically equivalent? \qquad
EXAMPLE 15. Let P and Q be statement forms. Determine whether the compound statements $\neg P \wedge Q$ and $\neg P \vee Q$ are logically equivalent (i.e. both true or both false).

P	Q			

REMARK 16. Let P and Q be statements. The biconditional $P \Leftrightarrow Q$ is a tautology if and only if P and Q are logically equivalent.

THEOREM 17. For statements P and Q,

$$
\neg(P \Rightarrow Q) \equiv P \wedge(\neg Q) .
$$

Some Fundamental Properties of Logical Equivalence

THEOREM 18. For the statement forms P, Q and R,

- $\neg(\neg P) \equiv$
- Commutative Laws
$P \vee Q \equiv$
$P \wedge Q \equiv$
- Associative Laws
$P \vee(Q \vee R) \equiv$
$P \wedge(Q \wedge R) \equiv$
- Distributive Laws
$P \vee(Q \wedge R) \equiv$
$P \wedge(Q \vee R) \equiv$
- De Morgan's Laws
$\neg(P \vee Q) \equiv(\neg P) \wedge(\neg Q)$
$\neg(P \wedge Q) \equiv(\neg P) \vee(\neg Q)$
Proof. Each part of the theorem is verified by means of a truth table.

P	Q					

Quantified Statements

EXAMPLE 19. Consider the following open sentence:

$$
P(n): \frac{2 n^{2}+5+(-1)^{n}}{2} \text { is prime. }
$$

How to convert this open sentence into a statement?

An open sentence can be made into a statement by using quantifiers.
Universal: $\forall x$ means for all/for every assigned value a of x.
Existential: $\exists x$ means that for some assigned values a of x.
Quantified statements

in symbols	in words
$\forall x \in D, P(x)$.	For every $x \in D, P(x)$. If $x \in D, ~ t h e n ~$$(x)$.

Once a quantifier is applied to a variable, then the variable is called a bound variable. The variable that is not bound is called a free variable.

1. The area of a rectangle is its length times its width.

Quantifiers:
2. A triangle may be equilateral.

Quantifiers:
3. $15-5=10$

Quantifiers:
4. A real-valued function that is continuous at 0 is not necessarily differentiable at 0 . Quantifiers:

EXAMPLE 20. For a triangle T, let
$P(T): T$ is equilateral $\quad Q(T): T$ is isosceles.
State $P(T) \Rightarrow Q(T)$ in a variety of ways:

EXAMPLE 21. Consider the following open sentences
$P(x): x$ is a multiple of $4 . \quad Q(x): x$ is even. Complete:

- "For every integer integer $x, P(x) \Rightarrow Q(x)$ " is \qquad .
- $P(x)$ is a \qquad condition for Q to be true.
- $Q(x)$ is a \qquad condition for $P(x)$ to be true.
- $Q(x)$ is not a \qquad condition for $P(x)$ to be true.

EXAMPLE 22. Consider the following open sentences
$P(f)$: f is a differentiable function.
$Q(f): f$ is a continuous function.
Complete:

- "For every real-valued function $f, P(f) \Rightarrow Q(f)$ " is \qquad .
- "For every real-valued function $f, Q(f) \Rightarrow P(f)$ " is \qquad -
- $Q(f)$ is a \qquad condition for f to be differentiable, but not a condition.
- $P(f)$ is a \qquad condition for f to be continuous.

EXAMPLE 23. If m and n are odd integers then $m+n$ is even.

Rewrite the statement in symbols. Then write its converse both in symbols and words.

EXAMPLE 24. Rewrite the following statements in symbols using quantifiers. Introduce variables, where appropriate.
a) For every real number $x, x+5=7$.
b) All positive real numbers have a square root.
c) The sum of an even integer and an odd integer is even.
d) For every integer n, either $n \leq 1$ or $n^{2} \geq 4$.

NEGATIONS

DEFINITION 25. If P is a statement, then the negation of P, written $\neg P$ (read "not P "), is the statement " P is false".

1. All continuous functions are differentiable.
2. P :There exist real numbers a and b such that $(a+b)^{2}=a^{2}+b^{2}$.

$$
\neg P
$$

Rules to negate statements with quantifiers:

$\neg(\forall x \in D, P(x)) \equiv$
$\neg(\exists x \in D \ni P(x)) \equiv$
$\neg(\forall x \in D,(P(x) \vee Q(x)) \equiv$
$\neg(\forall x \in D,(P(x) \wedge Q(x)) \equiv$
$\neg(\exists x \in D \ni(P(x) \vee Q(x)) \equiv$
$\neg(\exists x \in D \ni(P(x) \wedge Q(x)) \equiv$
EXAMPLE 26. Negate the statements below using the following steps:

1. Rewrite P in symbols using quantifiers.
2. Express the negation of P in symbols using the above rules.
3. Express $\neg P$ in words.
a) $P:$ If n is an odd integer then $3 n+7$ is odd.
\qquad $\neg P$
$\neg P$
b) P : There exists a positive integer n such that $m(n+5)<1$ for every integer m.
```
\(P\)
\(\neg P\)
\(\neg P\)
```

c) P: There exists a prime number p which is greater then 7 and less than 10.
\qquad

$$
x_{3}
$$

$$
\neg P
$$

$$
\neg P
$$

d) $P:$ For every even integer n there exists an integer m such that $n=2 m$.
\qquad
$\neg P$
$\neg P$
e) P : If n is an integer and n^{2} is a multiple of 4 then n is a multiple of 4 .
P
$\neg P$
$\neg P$

Negating An Implication

THEOREM 27. For statements P and Q,

$$
\neg(P \Rightarrow Q) \equiv P \wedge(\neg Q)
$$

Proof.

REMARK 28. The negation of an implication is not an implication!
EXAMPLE 29. Apply Theorem 27 to Negate the following statement. ${ }^{4}$
S : If n is an integer and n^{2} is a multiple of 4 , then n is a multiple of 4 .
S
$\neg S$

[^1]EXAMPLE 30. Express the following statements in the form"for all ... , if ... then ..." using symbols to represent variables. Then write their negations, again using symbols.
(a) S : Every octagon has eight sides.
(b) S : Between any two real numbers there is a rational number.

[^0]: ${ }^{1}$ This part is covered in Sections 1.1-1.3 in the textbook.
 ${ }^{2}$ i.e. it has both a subject and a verb
 ${ }^{3}$ We will study SETS in Chapter 2!

[^1]: ${ }^{4}$ Cf. Example 26(e)

