Mathematical Reasoning (Part I) 1

Statements

DEFINITION 1. A statement is any declarative sentence² that is either true or false, but not both.

A statement cannot be neither true nor false and it cannot be both true and false.

- 1. The integer 5 is odd.
- 2. The integer 24277151704311 is prime.
- 3. 15 + 7 = 22
- 4. Substitute the number 7 for x.
- 5. What is the derivative of $\cos x$?
- 6. Apple manufactures computers.
- 7. |x| > 7
- 8. The absolute value of a real number x is greater than 7.
- 9. The absolute value of a real number x is greater than 7.
- 10. $x^2 \ge 0$.
- 11. I am telling a lie.
- 12. What happen when Pinocchio says: "My nose will grow now"?
- Set Terminology and Notation (very short introduction³)

DEFINITIONS:

Set is a well-defined collection of objects.

Elements are objects or members of the set.

• Roster notation:

 $A = \{a, b, c, d, e\}$ Read: Set A with elements a, b, c, d, e.

• Indicating a pattern:

 $B = \{a, b, c, ..., z\}$ Read: Set B with elements being the letters of the alphabet.

If a is an element of a set A, we write $a \in A$ that read "a belongs to A." However, if a does not belong to A, we write $a \notin A$.

¹This part is covered in Sections 1.1-1.3 in the textbook.

²i.e. it has both a subject and a verb

³We will study SETS in Chapter 2!

Some Number sets:

- R is the set of all *real* numbers;
- $\mathbf{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$, the set of all *integers*;
- $\mathbf{Z}^+ = \{1, 2, 3, \ldots\}$, the set of all positive integers;
- $\mathbf{N} = \{0, 1, 2, 3, \ldots\}$, the set of all *natural* numbers;
- **E** is the set of all *even integers*;
- **O** is the set of all *odd integers*;
- $n\mathbf{Z}$ is the set of all integers multiples of $n \ (n \in \mathbf{Z})$;

An open sentence is any declarative sentence containing one or more variables, each variable representing a value in some prescribing set, called the domain of the variable, and which becomes a statement when values from their respective domains are substituted for these variables.

- 1. P(x): x+5=7
- 2. P(n): n is divisible by 6.

EXAMPLE 2. Discuss $P(x): (x-3)^2 \le 1$ over **Z**.

EXAMPLE 3. Discuss $P(x,y): x^2 + y^2 = 1$ when $x, y \in \mathbf{R}$.

The NEGATION of a Statement

DEFINITION 4. If P is a statement, then the **negation** of P, written $\neg P$ (read "not P"), is the statement "P is false".

Although $\neg P$ could always be expressed as

It is not the case that P.

there are usually better ways to express the statement $\neg P$.

1. P: The integer 77 is even.

- 2. $P: \quad 5^3 = 120 \quad \neg P:$
- 3. P: The absolute value of the real number x is less than 5.

Compound Statements

Logical connectivity	write	read	meaning
Conjunction	$P \wedge Q$	P and Q	Both P and Q are true
Disjunction	$P \lor Q$	P or Q	P is true or Q is true

P: Ben is a student.

Q: Ben is a teaching assistant.

TRUTH TABLES

P	Q	$P \wedge Q$	$Q \wedge P$	$P \lor Q$	$Q \lor P$

EXAMPLE 5. Rewrite the following open sentences (over R) using disjunction or conjunction.

- (a) $P(x): |x| \ge 10$.
- **(b)** P(x): |x| < 10.
- (c) $P(x): |4x+7| \ge 23.$

Implications

DEFINITION 6. Let P and Q be statements. The implication $P \Rightarrow Q$ (read "P implies Q") is the statement "If P is true, then Q is true."

In implication $P \Rightarrow Q$, P is called assumption, or hypothesis, or premise; and Q is called conclusion.

The truth table for implication:

P	Q	$P \Rightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

EXAMPLE 7. P: You pass the final exam.

Q: You pass the course.

 $P \Rightarrow Q$:

Alternative Expressions for $P \Rightarrow Q$. Necessary and Sufficient Conditions

If P, then Q. P implies Q. P only if Q. P is sufficient for Q. Q if P. Q when P. Q is necessary for P.

In order for Q to be true it is sufficient that P be true.

OI

Q must be true in order to P to be true.

REMARK 8. Note however, if $P \Rightarrow Q$ is true, then it is not necessary that P is true in order for Q to be true. Even if Q is true, P may be false.

Converse

DEFINITION 9. The statement $Q \Rightarrow P$ is called a **converse** of the statement $P \Rightarrow Q$.

EXAMPLE 10. State the converse statement for implication in Example 7.

EXAMPLE 11. P: The function $f(x) = \sin x$ is differentiable everywhere. Q: The function $f(x) = \sin x$ is continuous everywhere.

$$P \Rightarrow Q$$

$$Q \Rightarrow P$$

Biconditional "⇔"

For statements P and Q,

$$(P \Rightarrow Q) \land (Q \Rightarrow P)$$

is called the **biconditional** of P and Q and is denoted by $P \Leftrightarrow Q$. The biconditional $P \Leftrightarrow Q$ is stated as

"P is equivalent to Q." or "P if and only if Q." (or "P iff Q.") or as "P is a necessary and sufficient condition for Q."

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$P \Leftrightarrow Q$
Т	Т			
Т	F			
F	Т			
F	F			

EXAMPLE 12. Complete:

- (a) The biconditional "The number 17 is odd if and only if 57 is prime." is ______.
- (a) The biconditional "The number 24 is even if and only if 17 is prime." is ______.
- (a) The biconditional "The number 17 is even if and only if 24 is prime." is ______.

Tautologies and Contradictions

Tautology: statement that is always true Contradiction: statement that is always false

P	$\neg P$	$P \vee (\neg P)$	$P \wedge (\neg P)$
Т			
F			

Methods to verify tautology/contradiction: truth table and deductive proof.

EXAMPLE 13. Determine whether the following formula for the statements P and Q is a tautology, contradiction, or neither.

$$\neg(P \Rightarrow Q) \Leftrightarrow P \land (\neg Q).$$

Logical Equivalence

DEFINITION 14. Two compound statements are logically equivalent (write "\equiv") if they have the same truth tables, which means they both are true or both are false.

Question: Are the statements $P \Rightarrow Q$ and $Q \Rightarrow P$ logically equivalent?

EXAMPLE 15. Let P and Q be statement forms. Determine whether the compound statements $\neg P \land Q$ and $\neg P \lor Q$ are logically equivalent (i.e. both true or both false).

P	Q		

REMARK 16. Let P and Q be statements. The biconditional $P \Leftrightarrow Q$ is a tautology if and only if P and Q are logically equivalent.

THEOREM 17. For statements P and Q,

$$\neg (P \Rightarrow Q) \equiv P \land (\neg Q).$$

Some Fundamental Properties of Logical Equivalence

THEOREM 18. For the statement forms P, Q and R,

- $\neg(\neg P) \equiv$
- Commutative Laws

$$P\vee Q\equiv$$

$$P \wedge Q \equiv$$

• Associative Laws

$$P \lor (Q \lor R) \equiv$$

$$P \wedge (Q \wedge R) \equiv$$

• Distributive Laws

$$P \vee (Q \wedge R) \equiv$$

$$P \wedge (Q \vee R) \equiv$$

ullet De Morgan's Laws

$$\neg(P\vee Q)\equiv(\neg P)\wedge(\neg Q)$$

$$\neg(P \land Q) \equiv (\neg P) \lor (\neg Q)$$

Proof. Each part of the theorem is verified by means of a truth table.

P	Q			

Quantified Statements

EXAMPLE 19. Consider the following open sentence:
$$P(n): \ \frac{2n^2+5+(-1)^n}{2} \ \text{is prime}.$$

How to convert this open sentence into a statement?

An open sentence can be made into a statement by using quantifiers.

Universal: $\forall x$ means for all/for every assigned value a of x. **Existential**: $\exists x$ means that for some assigned values a of x.

Quantified statements

in symbols	in words
$\forall x \in D, P(x).$	For every $x \in D$, $P(x)$.
	If $x \in D$, then $P(x)$.
$\exists x \in D \ni P(x)$	There exists x such that $P(x)$.

Once a quantifier is applied to a variable, then the variable is called a **bound** variable. The variable that is not bound is called a **free** variable.

- 1. The area of a rectangle is its length times its width. Quantifiers:
- 2. A triangle may be equilateral.

Quantifiers:

3. 15 - 5 = 10

Quantifiers:

4.	A real-valued function that is continuous at 0 is not necessarily differentiable at 0.
	Quantifiers:

EXAMPLE 20. For a triangle T, let

P(T): T is equilateral Q(T): T is isosceles.

State $P(T) \Rightarrow Q(T)$ in a variety of ways:

EXAMPLE 21. Consider the following open sentences

P(x): x is a multiple of 4. Q(x): x is even. Complete:

- "For every integer integer $x, P(x) \Rightarrow Q(x)$ " is _____.
- \bullet P(x) is a ______ condition for Q to be true.
- Q(x) is a _____ condition for P(x) to be true.
- Q(x) is not a _____ condition for P(x) to be true.

EXAMPLE 22. Consider the following open sentences

P(f): f is a differentiable function.

Q(f): f is a continuous function.

Complete:

- "For every real-valued function $f, P(f) \Rightarrow Q(f)$ " is _____.
- "For every real-valued function $f, Q(f) \Rightarrow P(f)$ " is _____.
- Q(f) is a ______condition for f to be differentiable, but not a _____condition.
- \bullet P(f) is a _____ condition for f to be continuous.

EXAMPLE 23. If m and n are odd integers then m + n is even.

Rewrite the statement in symbols. Then write its converse both in symbols and words.

EXAMPLE 24. Rewrite the following statements in symbols using quantifiers. Introduce variables, where appropriate.

- a) For every real number x, x + 5 = 7.
- b) All positive real numbers have a square root.
- c) The sum of an even integer and an odd integer is even.
- **d)** For every integer n, either $n \le 1$ or $n^2 \ge 4$.

NEGATIONS

DEFINITION 25. If P is a statement, then the **negation** of P, written $\neg P$ (read "not P"), is the statement "P is false".

- $1. \ \ All \ continuous \ functions \ are \ differentiable.$
- 2. P: There exist real numbers a and b such that $(a+b)^2 = a^2 + b^2$.

 $\neg P$ _____

Rules to negate statements with quantifiers:

$$\neg(\forall x \in D, P(x)) \equiv$$

$$\neg(\exists x \in D \ni P(x)) \equiv$$

$$\neg(\forall x \in D, (P(x) \lor Q(x)) \equiv$$

$$\neg(\forall x \in D, (P(x) \land Q(x)) \equiv$$

$$\neg(\exists x \in D \ni (P(x) \lor Q(x)) \equiv$$

$$\neg(\exists x \in D \ni (P(x) \land Q(x)) \equiv$$

EXAMPLE 26. Negate the statements below using the following steps:

- 1. Rewrite P in symbols using quantifiers.
- 2. Express the negation of P in symbols using the above rules.
- 3. Express $\neg P$ in words.
- a) P: If n is an odd integer then <math>3n + 7 is odd.

b) P: There exists a positive integer n such that m(n+5) < 1 for every integer m.

$$P_{\underline{}}$$
 $\neg P_{\underline{}}$

c) P: There exists a prime number p which is greater then 7 and less than 10.

P	
$\neg P$	
$\neg P$	

\mathbf{d}	P	:	For	every	even	integer n	there	exists	an	integer	m	such	that	n =	2m.
,	_	-		,7											

$P_{\underline{}}$		
$\neg P$		
$\neg P$		

e) P: If n is an integer and n^2 is a multiple of 4 then n is a multiple of 4.

$P_{\underline{\hspace{1cm}}}$			
$\neg P$			
$\neg P$			

Negating An Implication

THEOREM 27. For statements P and Q,

$$\neg (P \Rightarrow Q) \equiv P \land (\neg Q).$$

Proof.

REMARK 28. The negation of an implication is not an implication!

EXAMPLE 29. Apply Theorem 27 to Negate the following statement:⁴ S: If n is an integer and n^2 is a multiple of 4, then n is a multiple of 4.

$S_{\underline{}}$			
$\neg S$			
_			

⁴Cf. Example 26(e)

	AMPLE 30. Express the following statements in the form "for all, if then" usi bols to represent variables. Then write their negations, again using symbols.
(a)	$S: Every\ octagon\ has\ eight\ sides.$
(b)	S: Between any two real numbers there is a rational number.