2. Sets

• Set Terminology and Notation

Set is a well-defined collection of objects. **Elements** are objects or members of the set.

Describing a Set

• Roster notation:

 $A = \{a, b, c, d, e\}$ Read: Set A with elements a, b, c, d, e.

• Indicating a pattern:

 $B = \{a, b, c, ..., z\}$ Read: Set B with elements being the letters of the alphabet.

Set-builder notation:

The symbol "|" is read "such that".

If a is an element of a set A, we write $a \in A$ that read "a belongs to A." However, if a does not belong to A, we write $a \notin A$.

Set-builder notation (a more precise way of describing a set)

NOTATION 1. Let P(x) be an open sentence. Then the notation

$$\{x|P(x)\} \quad or \quad \{x:P(x)\}$$

denotes the set of all elements x such that P(x) is a true statement. (The symbol "|" is read "such that".) When D is a set,

$$\{x \in D \mid P(x)\} = \{x \mid x \in D \land P(x)\}$$

EXAMPLE 2. Use set-builder notation and to describe the following sets in two different ways:

- a) O
- **b**) 5**Z**
- c) N
- d) Q

EXAMPLE 3. Prove or disprove: "If If $A = \{x | x \in \mathbf{R} \land |x| = 1\}$, $B = \{x | x \in \mathbf{R} \land x^4 = 1\}$, and $C = \{x | x \in \mathbf{C} \land x^4 = 1\}$, then A = B = C."

Interval notation:

Intervals:

- bounded intervals:
- 1. closed interval [a, b] =
- 2. open interval (a, b) =
- 3. half-open, half-closed interval (a, b] =
- 4. half-closed, half-open interval [a, b] =
 - unbounded intervals:
- 5. $[a, \infty) =$
- 6. $(a, \infty) =$
- 7. $(-\infty, a] =$
- 8. $(-\infty, a) =$
- 9. $(-\infty,\infty) =$

EXAMPLE 4. Represent the following sets in interval notation when it is possible.

a)
$$\{x \in \mathbf{R} | (x \ge 0) \land (x \in \mathbf{Z})\} =$$

b)
$$\{x \in \mathbf{Z} | 3 \le x < 10\} =$$

c) $\{x \in \mathbf{R} | -2016 \le x \le 2017\} =$

Subsets

- Two sets, A and B, are equal, written A = B, if and only if they have exactly the same elements. (NOTE: they do not have to be in the same order!).
- If every element in set A is also an element in set B, then A is a subset of B, written $A \subseteq B$.
- If A ⊆ B, but A ≠ B, then A is a proper subset of B, written A ⊂ B.
 Note that if A = {x ∈ D | P(x)}, then A ⊆ D.
- The empty set is the set that doesn't have any elements, denoted by \emptyset or $\{\}$.
- The universal set is the set that contains all of the elements for a problem, denoted by U.

EXAMPLE 5. Let $A, B \subseteq U$. Then $A = B \Leftrightarrow \forall x \in U, (x \in A \Leftrightarrow x \in B)$ $A \subseteq B \Leftrightarrow \forall x \in U, (x \in A \Rightarrow x \in B)$ $A \subset B \Leftrightarrow$

Question: Let $A = \{n \in \mathbb{Z} | n \text{ is even}\}, B = \{n \in \mathbb{Z} | n^2 \text{ is even}\}, \text{ and } C = \{n^2 | n \text{ is even}\}.$ Are these sets the same?

EXAMPLE 6. Let $A = \{n \in \mathbb{Z} | n = 3t - 2 \text{ for some } t \in \mathbb{Z}\}$ and $B = \{n \in \mathbb{Z} | n = 3t + 1 \text{ for some } t \in \mathbb{Z}\}$. Prove that A = B.

Cardinality

 $\mathbf{infinite} \ \mathbf{set}$

 $\mathbf{finite} \, \, \mathrm{set}$

cardinality of A, |A|

EXAMPLE 7. Let A and B be two sets.

(a) **TRUE/FALSE** If A = B, then |A| = |B|.

(b) TRUE/FALSE If |A| = |B|, then A = B.

EXAMPLE 8. Given $A = \{0, 1, 2, \dots, 8\}$, $B = \{1, 3, 5, 7\}$, $C = \{3, 5, 1, 7, 3, 1\}$, $D = \{5, 3, 1\}$, and $E = \emptyset$, then which of the following are TRUE?

 $(\mathbf{a})B = C$ $(\mathbf{b})B \subseteq C$ $(\mathbf{c})B \subset C$ $(\mathbf{d})C \subseteq B$ $(\mathbf{e})D \subset B$ $(\mathbf{f})D \subseteq B$ $(\mathbf{g})B \subset D$ $(\mathbf{h})8 \in A$ $(\mathbf{i}) \{4,6\} \subset A$ $(\mathbf{j})1,5 \subset A$ $(\mathbf{k})9 \notin C$ $(\mathbf{l})D \subseteq D$ $(\mathbf{m})\emptyset = 0$ $(\mathbf{n})0 \in E$ $(\mathbf{o})A \in A$ $(\mathbf{p})|A| = 8$ $(\mathbf{q})|C| = 7$ $(\mathbf{r})|E| = 0$ $(\mathbf{q})|B| = 5$

EXAMPLE 9. Which of the following are TRUE?

- 1. $\mathbf{Z}^+ \subset \mathbf{Z}$
- 2. $\mathbf{Z}^+ \subseteq \mathbf{Z}$
- 3. $\mathbf{N} \subseteq \mathbf{Z}^+$
- 4. $\mathbf{Z} \subset \mathbf{Q} \subseteq \mathbf{R}$

EXAMPLE 10. Describe the set $S = \{x \in \mathbf{R} | \sin x = 2\}$ in another manner.

Power set

EXAMPLE 11. Give all the subsets of $A = \{x, y\}$

DEFINITION 12. Let A be a set. The power set of A, written P(A), is

$$P(A) = \{ X \mid X \subseteq A \}.$$

EXAMPLE 13. Find the following

- (a) $P\{x, y\}$
- **(b)** $|P\{x,y\}|$
- EXAMPLE 14. Let $A = \{-1, 0, 1\}$.
 - 1. Write all subsets of A.
 - 2. Find all elements of power set of A.
 - 3. Write 3 subsets of P(A).

4. Find |P(A)|

- 5. Compute |P(P(A))|
- 6. What are |P(A)| and |P(P(A))| for an arbitrary set A?

EXAMPLE 15. Find

- (a) $P(\emptyset)$
- (b) $P(P(\emptyset))$
- (c) $P(\{-1\})$
- (d) $P(\{\emptyset, \{\emptyset\}\})$

REMARK 16. Note that

 $\emptyset \subseteq \{\emptyset, \{\emptyset\}\}, \quad \emptyset \subset \{\emptyset, \{\emptyset\}\}, \quad \{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}, \quad \{\emptyset\} \in \{\emptyset, \{\emptyset\}\},$

as well as

 $\left\{ \left\{ \emptyset \right\} \right\} \subseteq \left\{ \emptyset, \left\{ \emptyset \right\} \right\}, \quad \left\{ \left\{ \emptyset \right\} \right\} \not \in \left\{ \emptyset, \left\{ \emptyset \right\} \right\}, \quad \left\{ \left\{ \emptyset \right\} \right\} \in P(\left\{ \emptyset, \left\{ \emptyset \right\} \right\}).$

VENN DIAGRAMS

- a visual representation of sets (the universal set U is represented by a rectangle, and subsets of U are represented by regions lying inside the rectangle).

(a) $A = B$	(b)	$A \subset B \subset C$
		U

(c) A and B are not subsets of each other.

SET OPERATIONS

DEFINITION 18. Let A and B be sets. The union of A and B, written $A \cup B$, is the set of all elements that belong to either A or B or both. Symbolically:

$$A \cup B = \left\{ x | x \in A \lor x \in B \right\}.$$

DEFINITION 19. Let A and B be sets. The *intersection* of A and B, written $A \cap B$, is the set of all elements in common with A and B. Symbolically:

$$A \cap B = \{x | x \in A \land x \in B\}.$$

DEFINITION 20. Let A and B be sets. The complement of A in B denoted B-A, is $\{b \in B | b \notin A\}$.

REMARK 21. For convenience, if U is a universal set and A is a subset in U, we will write $U - A = \overline{A}$, called simply the **complement** of A.

EXAMPLE 22. Let A be a subset of a universal set U. Prove the following (a) $\overline{\overline{A}} = A$.

(b) $\overline{\emptyset} = U$.

(c) $\overline{U} = \emptyset$

EXAMPLE 23. Let $U = \{0, 1, 2, \dots, 9, 10\}$ be a universal set, $A = \{0, 2, 4, 6, 8, 10\}$, and $B = \{1, 3, 5, 7, 9\}$. Find

 $(\overline{A \cap B}) \cap (\overline{A \cup B}).$

set notation	=	\subset,\subseteq	U	\cap	Ō	Ø
logical connectivity						

Cartesian Product

DEFINITION 24. Let A and B be sets. The **Cartesian product** of A and B, written $A \times B$, is the following set:

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

Informally, $A\times B$ is the set of $\mathbf{ordered}$ pairs of objects.

EXAMPLE 25. Given $A = \{0, 1\}$ and $B = \{4, 5, 6\}$.

- (a) Does the pair (6,1) belong to $A \times B$?
- (b) List the elements of $A \times B$.
- (c) What is the cardinality of $A \times B$?
- (d) List the elements of $A \times A \times A$.
- (e) Does the triple (1, 6, 4) belong to $A \times B \times B$?

(f) Describe the following sets $R \times R$, $R \times R \times R$.

2. Sets (Part II: Proofs Involving Sets)

Fundamental properties of sets

THEOREM 26. The following statements are true for all sets A, B, and C.

- 1. $A \cup B = B \cup A$ (commutative)
- 2. $A \cap B = B \cap A$ (commutative)
- 3. $(A \cup B) \cup C = A \cup (B \cup C)$ (associative)
- 4. $(A \cap B) \cap C = A \cap (B \cap C)$ (associative)
- 5. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributive)
- 6. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (distributive)
 - DeMorgan's Laws: If A and B are the sets contained in some universal set U then
- $\tilde{7.} \ \overline{A \cup B} = \bar{A} \cap \bar{B}.$
- 8. $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Proving set properties

Use the following tautologies:

- $x \in A \cap B \Leftrightarrow (x \in A \land x \in B)$
- $\bullet \ x \in A \cup B \Leftrightarrow$
- $x \in A B \Leftrightarrow$
- $A = B \Leftrightarrow (x \in A \Leftrightarrow x \in B)$
- $A \subseteq B \Leftrightarrow (x \in A \Rightarrow x \in B)$
- $\bullet \ x \in \bar{A} \Leftrightarrow x \not\in A$

Methods:

- To prove $A \subseteq B$ it is sufficient to prove $x \in A \Rightarrow x \in B$.
- To prove A = B it is sufficient to prove $x \in A \Leftrightarrow x \in B$.
- To prove A = B it is sufficient to prove $A \subseteq B$ and $B \subseteq A$.
- To show that $A = \emptyset$ it is sufficient to show that $x \in A$ implies a false statement.

- 1. $A \subseteq A \cup B$.
- 2. $A \cap B \subseteq A$.
- 3. The empty set is a subset of every set. (Namely, for every set $A, \emptyset \subseteq A$. If $A \neq \emptyset$, then $\emptyset \subset A$.).
- 4. $A \cup \emptyset = A$.
- 5. $A \cap \emptyset = \emptyset$.

EXAMPLE 28. Let A and B be sets. Show that $(A - B) \cap B = \emptyset$.

PROPOSITION 29. For every two sets A and B,

$$A - B = A \cap \bar{B}$$

•

EXAMPLE 30. Let A, B and C be sets. Prove that

$$A - (B \cup C) = (A - B) \cup (A - C)$$

EXAMPLE 31. For the sets A, B and C prove that

 $A \times (B \cup C) = (A \times B) \cup (A \times C)$

PROPOSITION 32. Let A, B, and C be sets, and suppose $A \subseteq B$ and $B \subseteq C$. Then $A \subseteq C$.

EXAMPLE 33. Let A, B, C and D be sets. If $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$.

EXAMPLE 34. Prove the following statement. Let A and B be subsets of a universal set U. Then $A \subseteq B \Leftrightarrow A \cup B = B$.

EXAMPLE 35. Let A and B be subsets of a universal set U. Prove that

 $A = A - B \Leftrightarrow A \cap B = \emptyset.$