2. Sets

- Set Terminology and Notation

Set is a well-defined collection of objects.
Elements are objects or members of the set.

Describing a Set

- Roster notation:

 $A=\{a, b, c, d, e\}$ Read: Set A with elements a, b, c, d, e.- Indicating a pattern:
$B=\{a, b, c, \ldots, z\}$ Read: Set B with elements being the letters of the alphabet.

Set-builder notation:

The symbol "" is read "such that".
If a is an element of a set A, we write $a \in A$ that read " a belongs to A." However, if a does not belong to A, we write $a \notin A$.

Set-builder notation (a more precise way of describing a set)

NOTATION 1. Let $P(x)$ be an open sentence. Then the notation

$$
\{x \mid P(x)\} \quad \text { or } \quad\{x: P(x)\}
$$

denotes the set of all elements x such that $P(x)$ is a true statement. (The symbol "" is read "such that".) When D is a set,

$$
\{x \in D \mid P(x)\}=\{x \mid x \in D \wedge P(x)\}
$$

EXAMPLE 2. Use set-builder notation and to describe the following sets in two different ways:
a) O
b) $5 \mathbf{Z}$
c) N
d) Q

EXAMPLE 3. Prove or disprove:"IfIf $A=\{x|x \in \mathbf{R} \wedge| x \mid=1\}, B=\left\{x \mid x \in \mathbf{R} \wedge x^{4}=1\right\}$, and $C=$ $\left\{x \mid x \in \mathbf{C} \wedge x^{4}=1\right\}$, then $A=B=C$."

Interval notation:

Intervals:

- bounded intervals:

1. closed interval $[a, b]=$
2. open interval $(a, b)=$
3. half-open,half-closed interval $(a, b]=$
4. half-closed,half-open interval $[a, b)=$

- unbounded intervals:

5. $[a, \infty)=$
6. $(a, \infty)=$
7. $(-\infty, a]=$
8. $(-\infty, a)=$
9. $(-\infty, \infty)=$

EXAMPLE 4. Represent the following sets in interval notation when it is possible.
a) $\{x \in \mathbf{R} \mid(x \geq 0) \wedge(x \in \mathbf{Z})\}=$
b) $\{x \in \mathbf{Z} \mid 3 \leq x<10\}=$
c) $\{x \in \mathbf{R} \mid-2016 \leq x \leq 2017\}=$

Subsets

- Two sets, A and B , are equal, written $A=B$, if and only if they have exactly the same elements. (NOTE: they do not have to be in the same order!).
- If every element in set A is also an element in set B, then A is a subset of B, written $A \subseteq B$.
- If $A \subseteq B$, but $A \neq B$, then A is a proper subset of B, written $A \subset B$.

Note that if $A=\{x \in D \mid P(x)\}$, then $A \subseteq D$.

- The empty set is the set that doesn't have any elements, denoted by \emptyset or $\}$.
- The universal set is the set that contains all of the elements for a problem, denoted by U.

EXAMPLE 5. Let $A, B \subseteq U$. Then
$A=B \Leftrightarrow \forall x \in U,(x \in A \Leftrightarrow x \in B)$
$A \subseteq B \Leftrightarrow \forall x \in U,(x \in A \Rightarrow x \in B)$
$A \subset B \Leftrightarrow$
Question: Let $A=\{n \in \mathbf{Z} \mid n$ is even $\}, B=\left\{n \in \mathbf{Z} \mid n^{2}\right.$ is even $\}$, and $C=\left\{n^{2} \mid n\right.$ is even $\}$. Are these sets the same?

EXAMPLE 6. Let $A=\{n \in \mathbb{Z} \mid n=3 t-2$ for some $t \in \mathbb{Z}\}$ and $B=\{n \in \mathbb{Z} \mid n=3 t+1$ for some $t \in \mathbb{Z}\}$. Prove that $A=B$.

Cardinality

infinite set
finite set
cardinality of $A,|A|$
EXAMPLE 7. Let A and B be two sets.
(a) TRUE/FALSE If $A=B$, then $|A|=|B|$.
(b) $\boldsymbol{T R U E} / \boldsymbol{F A L S E} \quad$ If $|A|=|B|$, then $A=B$.

EXAMPLE 8. Given $A=\{0,1,2, \ldots, 8\}, B=\{1,3,5,7\}, C=\{3,5,1,7,3,1\}$, $D=\{5,3,1\}$, and $E=\emptyset$, then which of the following are TRUE?
$(\mathbf{a}) B=C$
$(\mathbf{b}) B \subseteq C$
$(\mathbf{c}) B \subset C$
$(\mathbf{d}) C \subseteq B$
$(\mathbf{e}) D \subset B$
$(\mathbf{f}) D \subseteq B$
$(\mathbf{g}) B \subset D$
$(\mathbf{h}) 8 \in A$
(i) $\{4,6\} \subset A$
$(\mathbf{j}) 1,5 \subset A$
$(\mathbf{k}) 9 \notin C$
(l) $D \subseteq D$
$(\mathbf{m}) \emptyset=0$
$(\mathbf{n}) 0 \in E$
(o) $A \in A$
$(\mathbf{p})|A|=8$
(q) $|C|=7$
$(\mathbf{r})|E|=0$
$(\mathbf{q})|B|=5$

EXAMPLE 9. Which of the following are TRUE?

1. $\mathbf{Z}^{+} \subset \mathbf{Z}$
2. $\mathbf{Z}^{+} \subseteq \mathbf{Z}$
3. $\mathbf{N} \subseteq \mathbf{Z}^{+}$
4. $\mathbf{Z} \subset \mathbf{Q} \subseteq \mathbf{R}$

EXAMPLE 10. Describe the set $S=\{x \in \mathbf{R} \mid \sin x=2\}$ in another manner.

Power set

EXAMPLE 11. Give all the subsets of $A=\{x, y\}$

DEFINITION 12. Let A be a set. The power set of A, written $P(A)$, is

$$
P(A)=\{X \mid X \subseteq A\}
$$

EXAMPLE 13. Find the following
(a) $P\{x, y\}$
(b) $|P\{x, y\}|$

EXAMPLE 14. Let $A=\{-1,0,1\}$.

1. Write all subsets of A.
2. Find all elements of power set of A.
3. Write 3 subsets of $P(A)$.
4. Find $|P(A)|$
5. Compute $|P(P(A))|$
6. What are $|P(A)|$ and $|P(P(A))|$ for an arbitrary set A ?

EXAMPLE 15. Find
(a) $P(\emptyset)$
(b) $P(P(\emptyset))$
(c) $P(\{-1\})$
(d) $P(\{\emptyset,\{\emptyset\}\})$

REMARK 16. Note that

$$
\emptyset \subseteq\{\emptyset,\{\emptyset\}\}, \quad \emptyset \subset\{\emptyset,\{\emptyset\}\}, \quad\{\emptyset\} \subset\{\emptyset,\{\emptyset\}\}, \quad\{\emptyset\} \in\{\emptyset,\{\emptyset\}\}
$$

as well as

$$
\{\{\emptyset\}\} \subseteq\{\emptyset,\{\emptyset\}\}, \quad\{\{\emptyset\}\} \notin\{\emptyset,\{\emptyset\}\}, \quad\{\{\emptyset\}\} \in P(\{\emptyset,\{\emptyset\}\}) .
$$

VENN DIAGRAMS

- a visual representation of sets (the universal set U is represented by a rectangle, and subsets of U are represented by regions lying inside the rectangle).

EXAMPLE 17. Use Venn diagrams to illustrate the following statements:
(a) $A=B$

(b) $A \subset B \subset C$

(c) A and B are not subsets of each other.

\square

SET OPERATIONS

DEFINITION 18. Let A and B be sets. The union of A and B, written $A \cup B$, is the set of all elements that belong to either A or B or both. Symbolically:

$$
A \cup B=\{x \mid x \in A \vee x \in B\}
$$

DEFINITION 19. Let A and B be sets. The intersection of A and B, written $A \cap B$, is the set of all elements in common with A and B. Symbolically:

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

DEFINITION 20. Let A and B be sets. The complement of A in B denoted $B-A$, is $\{b \in B \mid b \notin A\}$.

REMARK 21. For convenience, if U is a universal set and A is a subset in U, we will write $U-A=\bar{A}$, called simply the complement of A.

EXAMPLE 22. Let A be a subset of a universal set U. Prove the following
(a) $\overline{\bar{A}}=A$.
(b) $\bar{\emptyset}=U$.
(c) $\bar{U}=\emptyset$

EXAMPLE 23. Let $U=\{0,1,2, \ldots, 9,10\}$ be a universal set, $A=\{0,2,4,6,8,10\}$, and $B=\{1,3,5,7,9\}$. Find

$$
(\overline{A \cap B}) \cap(\overline{A \cup B}) .
$$

set notation	$=$	\subset, \subseteq	\cup	\cap	$\bar{\square}$	\emptyset
logical connectivity						

Cartesian Product

DEFINITION 24. Let A and B be sets. The Cartesian product of A and B, written $A \times B$, is the following set:

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

Informally, $A \times B$ is the set of ordered pairs of objects.
EXAMPLE 25. Given $A=\{0,1\}$ and $B=\{4,5,6\}$.
(a) Does the pair $(6,1)$ belong to $A \times B$?
(b) List the elements of $A \times B$.
(c) What is the cardinality of $A \times B$?
(d) List the elements of $A \times A \times A$.
(e) Does the triple $(1,6,4)$ belong to $A \times B \times B$?
(f) Describe the following sets $R \times R, R \times R \times R$.

2. Sets (Part II: Proofs Involving Sets)

Fundamental properties of sets

THEOREM 26. The following statements are true for all sets A, B, and C.

1. $A \cup B=B \cup A$ (commutative)
2. $A \cap B=B \cap A$ (commutative)
3. $(A \cup B) \cup C=A \cup(B \cup C)$ (associative)
4. $(A \cap B) \cap C=A \cap(B \cap C)$ (associative)
5. $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ (distributive)
6. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ (distributive)

DeMorgan's Laws: If A and B are the sets contained in some universal set U then
7. $\overline{A \cup B}=\bar{A} \cap \bar{B}$.
8. $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

Proving set properties

Use the following tautologies:

- $x \in A \cap B \Leftrightarrow(x \in A \wedge x \in B)$
- $x \in A \cup B \Leftrightarrow$
- $x \in A-B \Leftrightarrow$
- $A=B \Leftrightarrow(x \in A \Leftrightarrow x \in B)$
- $A \subseteq B \Leftrightarrow(x \in A \Rightarrow x \in B)$
- $x \in \bar{A} \Leftrightarrow x \notin A$

Methods:

- To prove $A \subseteq B$ it is sufficient to prove $x \in A \Rightarrow x \in B$.
- To prove $A=B$ it is sufficient to prove $x \in A \Leftrightarrow x \in B$.
- To prove $A=B$ it is sufficient to prove $A \subseteq B$ and $B \subseteq A$.
- To show that $A=\emptyset$ it is sufficient to show that $x \in A$ implies a false statement.

THEOREM 27. The following statements are true for all sets A and B.

1. $A \subseteq A \cup B$.
2. $A \cap B \subseteq A$.
3. The empty set is a subset of every set. (Namely, for every set $A, \emptyset \subseteq A$. If $A \neq \emptyset$, then $\emptyset \subset A$.).
4. $A \cup \emptyset=A$.
5. $A \cap \emptyset=\emptyset$.

EXAMPLE 28. Let A and B be sets. Show that $(A-B) \cap B=\emptyset$.

PROPOSITION 29. For every two sets A and B,

$$
A-B=A \cap \bar{B}
$$

EXAMPLE 30. Let A, B and C be sets. Prove that

$$
A-(B \cup C)=(A-B) \cup(A-C)
$$

EXAMPLE 31. For the sets A, B and C prove that

$$
A \times(B \cup C)=(A \times B) \cup(A \times C)
$$

PROPOSITION 32. Let A, B, and C be sets, and suppose $A \subseteq B$ and $B \subseteq C$. Then $A \subseteq C$.

EXAMPLE 33. Let A, B, C and D be sets. If $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$.

EXAMPLE 34. Prove the following statement. Let A and B be subsets of a universal set U. Then $A \subseteq B \Leftrightarrow A \cup B=B$.

EXAMPLE 35. Let A and B be subsets of a universal set U. Prove that

$$
A=A-B \Leftrightarrow A \cap B=\emptyset .
$$

