3 FUNCTIONS

3.1 Definition and Basic Properties

DEFINITION 1. Let A and B be nonempty sets. A function f from A to B is a rule that assigns to each element in the set A one and only one element in the set B. We call A the domain of f and B the codomain of f.

We write $f: A \to B$ and for each $a \in A$ we write f(a) = b if b is assigned to a.

Using diagram

EXAMPLE 2. Let $A = \{2, 4, 6, 10\}$ and $B = \{0, 1, -1, 8\}$. Write out three functions with domain A and codomain B.

Some common functions

- *Identity* function $i_A : A \to A$ maps every element to itself:
- Linear function $f : \mathbb{R} \to \mathbb{R}$ is defined by
- Constant function $f : \mathbb{R} \to \mathbb{R}$ is defined by

DEFINITION 3. Two functions f and g are equal if they have the same domain and the same codomain and if f(a) = g(a) for all a in domain.

Image of a Function

EXAMPLE 4. Discuss codomain of $f(x) = x^4$.

DEFINITION 5. Let $f : A \to B$ be a function. The image of f is

 $\operatorname{Im}(f) = \{ y \in B | y = f(x) \text{ for some } x \in A \}.$

Note that f(X) is the **image** of the set X under f. The **graph** of f is the set

 $\{(a,b)\in A\times B|b=f(a)\}\,.$

EXAMPLE 6. $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = \cos x$. Find $\operatorname{Im}(f)$ and $f([0, \pi/2])$.

EXAMPLE 7. $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = |\cos x|$. Find $\operatorname{Im}(f)$.

EXAMPLE 8. $f : \mathbb{R} \to \mathbb{Z}$ is defined by f(x) = [x], where [x] means the greatest integer $\leq x$. Find Im(f).

Rules

• For $f: A \to B$ to prove that Im(f) = S, use the following tautology:

$$(y \in S) \Leftrightarrow (\exists x \in A \ni f(x) = y).$$

• For $f: A \to B$ to prove that $f(X) = S, X \subset A$, use the following tautology

$$(y \in S) \Leftrightarrow (\exists x \in X \ni f(x) = y).$$

EXAMPLE 9. Let $S = \{y \in \mathbb{R} | y \ge 0\}$. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^4$ then $\operatorname{Im}(f) = S$.

EXAMPLE 10. $f : \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 5x - 4. Find f([0,1]). Justify your answer.

EXAMPLE 11. $f : \mathbb{Z} \to \mathbb{Z}$ is defined by

$$f(n) = \left\{ \begin{array}{lll} n-1 & if \ n \ is \ even, \\ n+1 & if \ n \ is \ odd. \end{array} \right.$$

Prove that $f(\mathbb{E}) = \mathbb{O}$.

PROPOSITION 12. Let A and B be nonempty sets and $f : A \to B$ be a function. If $X \subseteq Y \subseteq A$ then $f(X) \subseteq f(Y)$.

Proof.

PROPOSITION 13. Let A and B be nonempty sets and $f : A \to B$ be a function. If $X \subseteq A$ and $Y \subseteq A$ then

(a) $f(X \cup Y) = f(X) \cup f(Y)$.

(b) $f(X \cap Y) \subseteq f(X) \cap f(Y)$.

Proof

Inverse Image

DEFINITION 14. Let $f : A \to B$ be a function and let W be a subset of its codomain (i.e. $W \subseteq B$). Then the **inverse image** of W (written $f^{-1}(W)$) is the set

$$f^{-1}(W) = \{a \in A | f(a) \in W\}.$$

REMARK 15. This definition implies the following:

- $(x \in f^{-1}(W)) \Leftrightarrow (f(x) \in W)$
- If $W \subseteq \text{Im}(f)$ then $(S = f^{-1}(W)) \Rightarrow (f(S) = W)$

EXAMPLE 16. Let $A = \{a, b, c, d, e, f\}$ and $B = \{7, 9, 11, 12, 13\}$ and let the function $g : A \to B$ be given by

$$g(a) = 11, g(b) = 9, g(c) = 9, g(d) = 11, g(e) = 9, g(f) = 7.$$

Find

$$f^{-1}(\{7,9\}) =$$

$$f^{-1}(\{12,13\}) =$$

$$f^{-1}(\{11,12\}) =$$

EXAMPLE 17. $f : \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 3x + 4. Let $W = \{x \in \mathbb{R} | x > 0\}$. Find $f^{-1}(W)$.

EXAMPLE 18. $f : \mathbb{Z} \to \mathbb{Z}$ is defined by

$$f(n) = \begin{cases} n/2 & if \quad n \in \mathbb{E}, \\ n+1 & if \quad n \in \mathbb{O}. \end{cases}$$

Compute

(a) $f^{-1}(\{6,7\}) =$

(b) $f^{-1}(\mathbb{O})$

PROPOSITION 19. Let A and B be nonempty sets and $f : A \to B$ be a function. If W and V are subsets of B then

(a)
$$f^{-1}(W \cup V) = f^{-1}(W) \cup f^{-1}(V)$$
.

(b)
$$f^{-1}(W \cap V) = f^{-1}(W) \cap f^{-1}(V).$$

Section 3.2 Surjective and Injective Functions

Surjective functions ("onto")

DEFINITION 20. Let $f : A \to B$ be a function. Then f is surjective (or a surjection) if the image of f coincides with its codomain, i.e.

 $\operatorname{Im} f = B.$

Note: surjection is also called "onto".

Proving surjection:

We know that for all $f : A \to B$:

Thus, to show that $f: A \to B$ is a surjection it is sufficient to prove that ______ In other words, to prove that $f: A \to B$ is a surjective function it is sufficient to show that

EXAMPLE 21. Determine which of the following functions are surjective. Give a formal proof of your answer.

(a) Identity function

(b) $f : \mathbb{R} \to \mathbb{R}, f(x) = x^5$.

(c)
$$f: \mathbb{Z} \to \mathbb{Z}, f(n) = \begin{cases} n-2 & \text{if } n \in \mathbb{E}, \\ 2n-1 & \text{if } n \in \mathbb{O}. \end{cases}$$

(d)
$$f: \mathbb{Z} \to \mathbb{Z}, f(n) = \begin{cases} n+1 & \text{if } n \in \mathbb{E}, \\ n-3 & \text{if } n \in \mathbb{O}. \end{cases}$$

Injective functions ("one to one")

DEFINITION 22. Let $f : A \to B$ be a function. Then f is **injective** (or an injection) if whenever $a_1, a_2 \in A$ and $a_1 \neq a_2$, we have $f(a_1) \neq f(a_2)$.

Note: surjection is also called "onto". Using diagram:

EXAMPLE 23. Given $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$.

(a) Write out an injective function with domain A and codomain B. Justify your answer.

(b) Write out a non injective function with domain A and codomain B. Justify your answer.

Proving injection: Let $P(a_1, a_2) : a_1 \neq a_2$ and $Q(a_1, a_2) : \forall f(a_1) \neq f(a_2)$. Then by definition f is injective if _____. Using contrapositive, we have _____.

EXAMPLE 24. Determine which of the following functions are injective. Give a formal proof of your answer.

(a) $f : \mathbb{R} \to \mathbb{R}, f(x) = \sqrt[5]{x}$.

(b)
$$f: \mathbb{Z} \to \mathbb{Z}, f(n) = \begin{cases} n/2 & \text{if } n \in \mathbb{E}, \\ 2n & \text{if } n \in \mathbb{O}. \end{cases}$$

(c) $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x^5 + 5x^3 + 2x + 2014.$

Bijective functions

DEFINITION 25. A function that is both surjective and injective is called **bijective** (or bijection.)

EXAMPLE 26. Determine which of the following functions are bijective. Give a formal proof of your answer.

(a) $f : \mathbb{R} \to \mathbb{R}, f(x) = x^3$.

(b)
$$f : \mathbb{R} \to \mathbb{R}, f(x) = x^2$$
.

(c)
$$f : \mathbb{R} \to \mathbb{R}, f(x) = ax + b, where a, b \in \mathbb{R}.$$

EXAMPLE 27. Show that $f : \mathbb{R} - \{2\} \to \mathbb{R} - \{3\}$ defined by $f(x) = \frac{3x}{x-2}$ is bijective.

Permutations

DEFINITION 28. Let A be any set. A bijection $f : A \to A$ is called a permutation of A. EXAMPLE 29. Let $A = \{1, 2, 3\}$ and $f : A \to A$ is defined by f(1) = 3, f(2) = 1, f(3) = 2. EXAMPLE 30. Identity function is a permutation.

EXAMPLE 31. $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^3$.

REMARK 32. If A = n then there exists n! different permutations of A.

3.3 Composition and Invertible Functions

DEFINITION 33. Let A and B be nonempty sets. We define

$$F(A,B) =$$

the set of all functions from A to B. If A = B, we simply write F(A).

Composition of Functions

DEFINITION 34. Let A, B, and C be nonempty sets, and let $f \in F(A, B)$, $g \in F(B, C)$. We define a function

 $gf \in F(A, C),$

called the **composition** of f and g, by

$$gf(a) =$$

EXAMPLE 35. Let $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d\}$, $C = \{r, s, t, u, v\}$ and define the functions $f \in F(A, B)$, $g \in F(B, C)$ by

$$f = \{(1, b), (2, d), (3, a), (4, a)\}, \qquad g = \{(a, u), (b, r), (c, r), (d, s)\}.$$

Find gf. What is about fg?

EXAMPLE 36. Let $f, g \in \mathbf{R}$ be defined by $f(x) = e^x$ and $g(x) = x \sin x$. Find fg and gf.

EXAMPLE 37. Let $A = \mathbf{R} - \{0\}$ and $f \in F(A)$ is defined by $f(x) = 1 - \frac{1}{x}$ for all $x \in \mathbf{R}$. Determine *fff*.

EXAMPLE 38. Let $f, g \in F(\mathbf{Z})$ be defined by

$$f(n) = \begin{cases} n+4, & \text{if } n \in \mathbf{E} \\ 2n-3, & \text{if } n \in \mathbf{O} \end{cases} \quad g(n) = \begin{cases} 2n-4, & \text{if } n \in \mathbf{E} \\ (n-1)/2, & \text{if } n \in \mathbf{O} \end{cases}$$

Find gf and fg.

PROPOSITION 39. Let $f \in F(A, B)$ and $g \in F(B, C)$. Then

i. If f and g are surjections, then gf is also a surjection. Proof.

ii. If f and g are injections, then gf is also an injection.Proof.

COROLLARY 40. If f and g are bijections, then gf is also a bijection.

PROPOSITION 41. Let $f \in F(A, B)$. Then $fi_A = f$ and $i_B f = f$.

Inverse Functions

DEFINITION 42. Let $f \in F(A, B)$. Then f is invertible if there is a function $f^{-1} \in F(B, A)$ such that

$$f^{-1}f = i_A \quad \text{and} \quad ff^{-1} = i_B.$$

If f^{-1} exists then it is called the **inverse** function of f.

REMARK 43. f is invertible if and only if f^{-1} is invertible.

PROPOSITION 44. The inverse function is unique.

Proof.

EXAMPLE 45. The function $f : \mathbb{R} - \{2\} \to \mathbb{R} - \{3\}$ defined by $f(x) = \frac{3x}{x-2}$ is known to be bijective (see Example 8, Section 3.2). Determine the inverse $f^{-1}(x)$, where $x \in \mathbb{R} - \{3\}$.

REMARK 46. Finding the inverse of a bijective function is not always possible by algebraic manipulations. For example,

if $f(x) = e^x$ then $f^{-1}(x) =$ _____

The function $f(x) = 3x^5 + 5x^3 + 2x + 2014$ is known to be bijective, but there is no way to find expression for its inverse.

THEOREM 47. Let A and B be sets, and let $f \in F(A, B)$. Then f is invertible if and only if f is bijective.