3 FUNCTIONS (part I)

3.1 Definition and Basic Properties

DEFINITION 1. Let A and B be nonempty sets. A function f from the set A to the set B is a correspondence that assigns to each element a in the set A one and only one element b in the set B , which is denoted by $f(a)$.

We call A the domain of f and B the codomain of f .

If $a \in A$ and $b \in B$ are such that $b = f(a)$, then b is called the **value** of f at a, or the **image** of a under f . We may also say that f **maps** a to b .

Using diagram

DEFINITION 2. Two functions f and g are **equal** if they have the same domain and the same codomain and if $f(a) = g(a)$ for all a in domain.

DEFINITION 3. The graph of $f : A \rightarrow B$ is the set

$$
G_f = \{(a, b) \in A \times B | b = f(a) \}.
$$

- We can determine a function from its domain, codomain, and graph.
- We can describe a function by formula, by listing its values, or by words.

functions

EXAMPLE 4. Let $A = \{2, 4, 6\}$ and $B = \{a, b, c, d\}$. Determine in which of the following cases, f is function from A to B.

(a) $f(2) = b, f(4) = a, f(6) = d$

(b)
$$
f(2) = c, f(4) = c, f(6) = c
$$

(c)
$$
f(2) = a, f(4) = b, f(6) = c, f(4) = d
$$

(d) $f(2) = c, f(6) = d$

Some common functions

- Identity function $i_A : A \to A$ maps every element to itself:
- Polynomial of degree n with real coefficients a_0, a_1, \ldots, a_n is a function from R to R

Polynomials of degrees 0,1,2,3 are constant, linear, quadratic, cubic, respectively. by

DEFINITION 5. Let A and B be nonempty sets. We define

$$
F(A, B) =
$$

the set of all functions from A to B. If $A = B$, we simply write $F(A)$.

EXAMPLE 6. Let $f \in F(A, B)$ be defined by $f(x) = x^3 + 3$. In each of the following cases find its graph and illustrate it .

(a) $A = B = \mathbb{R}$

(a) $A = \{-1, 0, 1\}, B = \mathbb{R}$

Image (or Range) of a Function

DEFINITION 7. Let $f \in F(A, B)$. The image of f is

 $\text{Im}(f) = \{y \in B | y = f(x) \text{ for some } x \in A\}.$

Using symbols complete the following

- Im(f) ⊆
- y ∈ Im(f) ⇔
- y 6∈ Im(f) ⇔

EXAMPLE 8. $f : \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = \cos x$. Find Im(f) and $f([0, \pi/2])$.

EXAMPLE 9. Let $f: [\frac{1}{3}, \infty) \to \mathbb{R}$ be defined by $f(x) = \sqrt{3x-1}$ and $S = \{y \in \mathbb{R} | y \ge 0\}$. Prove that $Im f = S$.

Section 3.2 Surjective and Injective Functions

Surjective functions ("onto")

DEFINITION 10. Let $f : A \rightarrow B$ be a function. Then f is surjective (or a surjection) if the image of f coincides with its codomain, i.e.

 $Im f = B$.

Note: surjection is also called "onto". Proving surjection: We know that for all f : A → B:

Thus, to show that $f : A \to B$ is a surjection it is sufficient to prove that

In other words, to prove that $f : A \to B$ is a surjective function it is sufficient to show that

Question: How to disprove surjectivity?

EXAMPLE 11. Let $f \in F(\mathbb{R})$ and $g \in F(\mathbb{R}, [0, \infty))$ defined by $f(x) = g(x) = x^4$. Determine whether the following are true

- (a) $\text{Im}(f) = \text{Im}(g)$
- (b) $f = g$
- (c) f is surjective
- (d) g is surjective

EXAMPLE 12. Prove that the function $f \in F(\mathbb{R} - \{2\}, \mathbb{R} - \{3\})$ defined by $f(x) = \frac{3x}{x-2}$ is surjective.

Injective functions ("one to one")

DEFINITION 13. Let $f : A \rightarrow B$ be a function. Then f is injective (or an injection) if whenever $a_1, a_2 \in A$ and $a_1 \neq a_2$, we have $f(a_1) \neq f(a_2)$.

In other words, f is injective if and only if the images of every two distinct points in the domain of f are distinct.

EXAMPLE 14. Given $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$. Determine whether the following functions are injective.Justify your answer.

(a) $f \in F(A, B)$ defined by $G_f = \{(1, 3), (2, 4), (3, 5)\}\$

(b) $g \in F(A, B)$ defined by $G_g = \{(1, 5), (2, 4), (3, 4)\}\$

Proving injection: Let $P(a_1, a_2)$: $a_1 \neq a_2$ and $Q(a_1, a_2)$: $f(a_1) \neq f(a_2)$. Then by definition f is injective if $____________________$. Using contrapositive, we have . In other words, to prove injection show that:

Question: How to disprove injectivity?

EXAMPLE 15. Prove or disprove injectivity of the following functions.

(a) $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt[5]{x}$.

(b)
$$
f : \mathbb{R} \to \mathbb{R}
$$
, $f(x) = x^4$.

(c)
$$
f: \mathbb{Z} \to \mathbb{Z}
$$
, $f(n) = \begin{cases} n/2 & \text{if } n \in \mathbb{E}, \\ 2n & \text{if } n \in \mathbb{O}. \end{cases}$

Discussion Exercise.

• Must a strictly increasing or decreasing function be injective?

• Must an injective function be strictly increasing or decreasing?

EXAMPLE 16. Prove or disprove injectivity of the following functions. In each case, $f \in F(\mathbb{R})$. (a) $f(x) = 3x^5 + 5x^3 + 2x + \pi$.

(b)
$$
f(x) = x^{12} + x^8 - x^4 + 12.
$$

Bijective functions

DEFINITION 17. A function that is both surjective and injective is called **bijective** (or bijection.) EXAMPLE 18. Determine which of the following functions are bijective. (a) $f : \mathbb{R} \to \mathbb{R}, f(x) = x^3$.

(b) $f : \mathbb{R} \to \mathbb{R}, f(x) = x^2$.

3.3 Composition and Invertible Functions

Composition of Functions

DEFINITION 19. Let A, B, and C be nonempty sets, and let $f \in F(A, B)$, $g \in F(B, C)$. We define a function

$$
g \circ f \in F(A, C),
$$

called the **composition** of f and g, by

$$
g \circ f(a) =
$$

Alternative notation for composition of f and g : gf

Using diagram

EXAMPLE 20. Let $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d\}$, $C = \{r, s, t, u, v\}$ and define the functions $f \in$ $F(A, B), g \in F(B, C)$ by their graphs:

$$
G_f = \{(1, b), (2, d), (3, a), (4, a)\}, \qquad G_g = \{(a, u), (b, r), (c, r), (d, s)\}.
$$

Find $g \circ f$. What is about $f \circ g$?

EXAMPLE 21. Let $f, g \in F(\mathbf{R})$ be defined by $f(x) = e^x$ and $g(x) = x \sin x$. Find $f \circ g$ and $g \circ f$.

PROPOSITION 22. Let $f \in F(A, B)$, $g \in F(B, C)$, and $h \in F(C, D)$. Then

$$
(h \circ g) \circ f = h \circ (g \circ f),
$$

i.e. composition of functions is associative. Proof.

EXAMPLE 23. Let $f \in F(\mathbf{R} - \{0,1\})$ be defined by $f(x) = 1 - \frac{1}{x}$ $\frac{1}{x}$. Determine $f \circ f \circ f$.

PROPOSITION 24. Let $f \in F(A, B)$ and $g \in F(B, C)$. Then

i. If f and g are surjections, then gf is also a surjection. Proof.

ii. If f and g are injections, then gf is also an injection. Proof.

COROLLARY 25. If f and g are bijections, then gf is also a bijection.

PROPOSITION 26. Let $f \in F(A, B)$. Then $f i_A = f$ and $i_B f = f$.

Inverse Functions

DEFINITION 27. Let $f \in F(A, B)$. Then f is **invertible** if there is a function $f^{-1} \in F(B, A)$ such that

$$
f^{-1}f = i_A \quad \text{and} \quad ff^{-1} = i_B.
$$

If f^{-1} exists then it is called the **inverse** function of f.

Question: What is the inverse of f^{-1} ?

REMARK 28. f is invertible if and only if f^{-1} is invertible.

EXAMPLE 29. Discuss the inverse of a function defined by $f(x) = \sin x$.

PROPOSITION 30. The inverse function is unique.

Proof.

EXAMPLE 31. Show that the function $f : \mathbb{R} - \{2\} \to \mathbb{R} - \{3\}$ defined by $f(x) = \frac{3x}{x-2}$ is invertible and find its inverse function. (Note that the given function is bijective.)

REMARK 32. Finding the inverse of a bijective function is not always possible by algebraic manipulations. For example,

if $f(x) = e^x$ then $f^{-1}(x) =$

The function $f(x) = 3x^5 + 5x^3 + 2x + 2016$ is known to be bijective, but there is no way to find expression for its inverse.

THEOREM 33. A function $f \in F(A, B)$ is invertible if and only if f is bijective.

COROLLARY 34. If a function $f \in F(A, B)$ is bijective, so is f^{-1} .