3 FUNCTIONS (part II)

Functions and Sets

Image of a Set

DEFINITION 1. Let $f : A \to B$ be a function. If $X \subseteq A$, we define f(X), the image of X under f, by

 $f(X) = \{y \in B | y = f(x) \text{ for some } x \in X\}.$

- EXAMPLE 2. Let $f \in F(A, B)$. Complete:
- (a) If $X \subseteq A$ then $f(X) \subseteq ___\subseteq __$
- (b) $f(A) = _$
- (c) $y \in f(X) \Leftrightarrow$
- (d) $y \notin f(X) \Leftrightarrow$

EXAMPLE 3. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \cos x$. Find the following

- (a) $f([-\pi/2,\pi/2])$
- **(b)** $f([-\pi/2,0])$
- (c) $f([-\pi/2,\pi/2017])$
- (d) $f([-\pi/4,\pi/4])$
- (e) Does $-\frac{1}{2017}$ belong to $f([-\pi/2,\pi/2])$?

Inverse Image

DEFINITION 4. Let $f : A \to B$ be a function and let W be a subset of its codomain (i.e. $W \subseteq B$). Then the **inverse image** of W (written $f^{-1}(W)$) is the set

$$f^{-1}(W) = \{x \in A | f(x) \in W\}$$

The inverse image $f^{-1}(W)$ is a subset of its domain containing all preimages of points from W under f. EXAMPLE 5. Let $f \in F(A, B)$ and $W \subseteq B$. Complete: (a) $f^{-1}(W) \subseteq \underline{\qquad} \subseteq \underline{\qquad}$ (b) $x \in f^{-1}(W) \Leftrightarrow \underline{\qquad}$ (c) $x \notin f^{-1}(W) \Leftrightarrow \underline{\qquad}$ (d) If $x \in A$ and $y \in B$, then $f(x) _ B$, $f(\{x\}) _ B$, $, f^{-1}(y) _ A$, $f^{-1}(\{y\}) _ A$, EXAMPLE 6. Let $f \in F(\mathbb{R})$ be defined by $f(x) = x^4$. Find the following: (a) f([1,2]) =

- **(b)** f([-2, -1]) =
- (c) $f^{-1}([1, 16]) =$
- (d) $f^{-1}([-16, -1]) =$
- (e) $f^{-1}([-1,1]) =$
- (f) $f((-\infty,\infty)) =$
- (g) $f^{-1}(\mathbb{R}) =$
- (h) $f^{-1}(\mathbb{R}^+) =$
- (i) $f(f^{-1}([-16, -1])) =$
- (j) $f(f^{-1}([-1,1])) =$
- (k) Let X, Y ⊆ dom(f) and W ⊂ codom(f). Determine the truth or falsehood of the following
 1. f⁻¹(f(X)) = X

2. $f(f^{-1}(W)) = W$

3. $f(X) \cap f(Y) = f(X \cap Y)$

Summary

Let $f: A \to B$. Then above definitions imply the following tautologies

- $(y \in \text{Im}(f)) \Leftrightarrow (\exists x \in A \ni f(x) = y).$
- $(y \in f(X)) \Leftrightarrow (\exists x \in X \ni f(x) = y).$
- $(x \in f^{-1}(W)) \Leftrightarrow (f(x) \in W).$

Also note that

• If $W \subseteq \text{Im}(f)$ then $(S = f^{-1}(W)) \Rightarrow (f(S) = W)$.

EXAMPLE 7. $f : \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 5x - 4. Find f([0,1]). Justify your answer.

EXAMPLE 8. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 3x + 4 and let $W = \{x \in \mathbb{R} | x > 0\}$. Find $f^{-1}(W)$.

PROPOSITION 9. Let $f \in F(A, B)$. If $X \subseteq Y \subseteq A$ then $f(X) \subseteq f(Y)$.

Proof.

PROPOSITION 10. Let $f \in F(A, B)$. If W and V are subsets of B then

$$f^{-1}(W \cup V) = f^{-1}(W) \cup f^{-1}(V).$$

Proof.

EXAMPLE 11. Let A and B be sets and X and Y be subsets of A. Let $f \in F(A, B)$. (a) Prove that $f(X \cap Y) \subseteq f(X) \cap f(Y)$.

- (b) Give an example of a function $f \in F(A, B)$ for some A and B for which $f(X \cap Y) \neq f(X) \cap f(Y)$ for some subsets X and Y of A.
- (c) Prove that if, in addition, f is an injective function, then $f(X \cap Y) = f(X) \cap f(Y)$.

EXAMPLE 12. Let A and B be sets and W be a subset of B. Let $f \in F(A, B)$.

(a) Prove that $f(f^{-1}(W)) \subseteq W$.

- (b) Give an example of a function $f \in F(A, B)$ for some A and B and subset W of B such that $f(f^{-1}(W)) \neq W$.
- (c) Prove that if, in addition, f is an surjective function, then $f(f^{-1}(W)) = W$.