3 FUNCTIONS (part II)

Functions and Sets

Image of a Set

DEFINITION 1. Let $f: A \rightarrow B$ be a function. If $X \subseteq A$, we define $f(X)$, the image of X under f, by

$$
f(X)=\{y \in B \mid y=f(x) \quad \text { for some } \quad x \in X\}
$$

EXAMPLE 2. Let $f \in F(A, B)$. Complete:
(a) If $X \subseteq A$ then $f(X) \subseteq$ \qquad \subseteq \qquad
(b) $f(A)=$ \qquad
(c) $y \in f(X) \Leftrightarrow$ \qquad
(d) $y \notin f(X) \Leftrightarrow$ \qquad
EXAMPLE 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\cos x$. Find the following
(a) $f([-\pi / 2, \pi / 2])$
(b) $f([-\pi / 2,0])$
(c) $f([-\pi / 2, \pi / 2017])$
(d) $f([-\pi / 4, \pi / 4])$
(e) Does $-\frac{1}{2017}$ belong to $f([-\pi / 2, \pi / 2])$?

Inverse Image

DEFINITION 4. Let $f: A \rightarrow B$ be a function and let W be a subset of its codomain (i.e. $W \subseteq B$). Then the inverse image of W (written $f^{-1}(W)$) is the set

$$
f^{-1}(W)=\{x \in A \mid f(x) \in W\}
$$

The inverse image $f^{-1}(W)$ is a subset of its domain containing all preimages of points from W under f. EXAMPLE 5. Let $f \in F(A, B)$ and $W \subseteq B$. Complete:
(a) $f^{-1}(W) \subseteq$ \qquad \subseteq \qquad
(b) $x \in f^{-1}(W) \Leftrightarrow$ \qquad
(c) $x \notin f^{-1}(W) \Leftrightarrow$ \qquad
(d) If $x \in A$ and $y \in B$, then

$$
f(x) _B, \quad f(\{x\}) _B, \quad, f^{-1}(y) _A, \quad f^{-1}(\{y\}) _A,
$$

EXAMPLE 6. Let $f \in F(\mathbb{R})$ be defined by $f(x)=x^{4}$. Find the following:
(a) $f([1,2])=$
(b) $f([-2,-1])=$
(c) $f^{-1}([1,16])=$
(d) $f^{-1}([-16,-1])=$
(e) $f^{-1}([-1,1])=$
(f) $f((-\infty, \infty))=$
(g) $f^{-1}(\mathbb{R})=$
(h) $f^{-1}\left(\mathbb{R}^{+}\right)=$
(i) $f\left(f^{-1}([-16,-1])\right)=$
(j) $f\left(f^{-1}([-1,1])\right)=$
(k) Let $X, Y \subseteq \operatorname{dom}(f)$ and $W \subset \operatorname{codom}(f)$. Determine the truth or falsehood of the following

1. $f^{-1}(f(X))=X$
2. $f\left(f^{-1}(W)\right)=W$
3. $f(X) \cap f(Y)=f(X \cap Y)$

Summary

Let $f: A \rightarrow B$. Then above definitions imply the following tautologies

- $(y \in \operatorname{Im}(f)) \Leftrightarrow(\exists x \in A \ni f(x)=y)$.
- $(y \in f(X)) \Leftrightarrow(\exists x \in X \ni f(x)=y)$.
- $\left(x \in f^{-1}(W)\right) \Leftrightarrow(f(x) \in W)$.

Also note that

- If $W \subseteq \operatorname{Im}(f)$ then $\left(S=f^{-1}(W)\right) \Rightarrow(f(S)=W)$.

EXAMPLE 7. $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=5 x-4$. Find $f([0,1])$. Justify your answer.

EXAMPLE 8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=3 x+4$ and let $W=\{x \in \mathbb{R} \mid x>0\}$. Find $f^{-1}(W)$.

PROPOSITION 9. Let $f \in F(A, B)$. If $X \subseteq Y \subseteq A$ then $f(X) \subseteq f(Y)$.
Proof.

PROPOSITION 10. Let $f \in F(A, B)$. If W and V are subsets of B then

$$
f^{-1}(W \cup V)=f^{-1}(W) \cup f^{-1}(V)
$$

Proof.

EXAMPLE 11. Let A and B be sets and X and Y be subsets of A. Let $f \in F(A, B)$.
(a) Prove that $f(X \cap Y) \subseteq f(X) \cap f(Y)$.
(b) Give an example of a function $f \in F(A, B)$ for some A and B for which $f(X \cap Y) \neq f(X) \cap f(Y)$ for some subsets X and Y of A.
(c) Prove that if, in addition, f is an injective function, then $f(X \cap Y)=f(X) \cap f(Y)$.

EXAMPLE 12. Let A and B be sets and W be a subset of B. Let $f \in F(A, B)$.
(a) Prove that $f\left(f^{-1}(W)\right) \subseteq W$.
(b) Give an example of a function $f \in F(A, B)$ for some A and B and subset W of B such that $f\left(f^{-1}(W)\right) \neq W$.
(c) Prove that if, in addition, f is an surjective function, then $f\left(f^{-1}(W)\right)=W$.

