4. Sets

4.1. The language of sets

• Set Terminology and Notation

Set is a well-defined collection of objects. Elements are objects or members of the set.

Describing a Set

• Roster notation:

 $A = \{a, b, c, d, e\}$ Read: Set A with elements a, b, c, d, e.

- Indicating a pattern:
 - $B = \{a, b, c, ..., z\}$ Read: Set B with elements being the letters of the alphabet.

If a is an element of a set A, we write $a \in A$ that read "a belongs to A." However, if a does not belong to A, we write $a \notin A$.

Set-builder notation (a more precise way of describing a set)

NOTATION 1. Let P(x) be a predicate. Then the notation

$$A = \{x | P(x)\}$$
 or $A = \{x : P(x)\}$

denotes the set A of all elements x such that P(x) is a true statement. In symbols,

$$\forall x, \ x \in A \ \Leftrightarrow P(x).$$

When D is a set containing the set A, the notation

$$A = \{ x \in D | P(x) \} = \{ x | x \in D \land P(x) \}$$

denotes the set A of all elements in D such that P(x) is a true statement. In symbols,

$$\forall x \in D, \ x \in A \ \Leftrightarrow P(x).$$

EXAMPLE 2. Use set-builder notation to describe the following sets in two different ways.

- a) O
- **b**) 5**Z**
- c) N
- d) **Q**
- e) Set of all numbers of the form 4n + 2.
- f) Set of all positive integers less than 2019.

EXAMPLE 3. For each of the following sets use symbols to fill in the blanks:

- $A = \{n | n \in \mathbb{E} \text{ and } |n| > 12\}$
 - $1. \ x \in A \Leftrightarrow ___$
 - 2. $16 \in A$ because _____
 - 3. $4 \in A$ because _____
 - 4. $7 \in A$ because _____
- $B = \left\{ x \in \mathbb{R} | x^2 4 = 0 \right\}$
 - $1. \ x \in B \Leftrightarrow ____$
 - 2. $16 \in B$ because _____
 - 3. $4 \in B$ because _____
- $C = \{3t+1 | t \in \mathbb{Z}\}$
 - 1. $x \in C \Leftrightarrow$ _____
 - 2. $16 \in C$ because _____
 - 3. $4 \in C$ because _____

Interval notation:

Intervals

NOTATION 4. • bounded intervals:

- 1. closed interval $[a, b] = \{x \in \mathbb{R} | a \le x \le b\}$
- 2. open interval $(a, b) = \{x \in \mathbb{R} | a < x < b\}$
- 3. half-open, half-closed interval $(a, b] = \{x \in \mathbb{R} | a < x \leq b\}$
- 4. half-closed, half-open interval $[a, b) = \{x \in \mathbb{R} | a \le x < b\}$
 - unbounded intervals:
- 5. $[a, \infty) = \{x \in \mathbb{R} \mid a \le x\}$
- 6. $(a, \infty) = \{x \in \mathbb{R} | a < x\}$
- 7. $(-\infty, a] = \{x \in \mathbb{R} | x \le a\}$
- 8. $(-\infty, a) = \{x \in \mathbb{R} | x < a\}$
- 9. $(-\infty,\infty) = \mathbb{R}$

EXAMPLE 5. Represent the following sets in interval notation when it is possible.

a) $\{x \in \mathbf{R} | (x \ge 0) \land (x \in \mathbf{Z})\} =$

b)
$$\{x \in \mathbf{Z} | 3 \le x < 10\} =$$

c) $\{x \in \mathbf{R} | -2019 \le x \le 2020\} =$

Subsets

• Two sets, A and B, are equal, written A = B, if and only if they have exactly the same elements. (NOTE: they do not have to be in the same order!).

In symbols: $A \subseteq B \Leftrightarrow (\forall x, (x \in A \qquad x \in B))$ For example,

$$\{a,b,c\} \quad \{c,a,b\} \quad \{a,b,c,b\}$$

Question: How to show that two sets are not equal?

- If every element in set A is also an element in set B, then A is a subset of B, written $A \subseteq B$. Note that $A \subseteq A$. In symbols: $A \subseteq B \Leftrightarrow (\forall x, (x \in A \quad x \in B))$
- If $A \subseteq B$, but $A \neq B$, then A is a **proper** subset of B, written $A \subset B$.

$$A \subseteq B \Leftrightarrow (A \subset B \quad \lor \quad A = B)$$

and

$$A \subset B \Leftrightarrow (A \subseteq B \land A \neq B)$$

- The empty set is the set that doesn't have any elements, denoted by \emptyset or $\{\}$.
- The universal set is the set that contains all of the elements for a problem, denoted by U.

EXAMPLE 6. Let $A = \{n \in \mathbb{Z} | n \text{ is even}\}, B = \{n \in \mathbb{Z} | n^2 \text{ is even}\}, and C = \{n^2 | n \text{ is even}\}.$ Prove or disprove the following:

(a) A = B

(a) B = C

infinite sets $\mathbb{R}, \mathbb{Z}, \mathbb{Q}, [1,3), \{2^n | n \in \mathbb{N}\}$ finite sets $\{\Delta, \Box\}, \{2^n | n \in \{3,4,5\}\}$ cardinality of a finite set A, |A|

$$|\emptyset| =$$
, $|\{x \in \mathbb{R} | x^4 = 1\}| =$

EXAMPLE 7. Let A and B be two sets.

- (a) **TRUE/FALSE** If A = B, then |A| = |B|.
- (b) TRUE/FALSE If |A| = |B|, then A = B.

EXAMPLE 8. Let $A = \{n \in \mathbb{Z} | n = 3t - 2 \text{ for some } t \in \mathbb{Z}\}$ and $B = \{n \in \mathbb{Z} | n = 3t + 1 \text{ for some } t \in \mathbb{Z}\}$. Prove that A = B.

4.2 Operations on sets

VENN DIAGRAMS

- a visual representation of sets (the universal set U is represented by a rectangle, and subsets of U are represented by regions lying inside the rectangle).

EXAMPLE 9. Use Venn diagrams to illustrate the following statements:

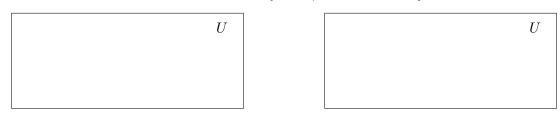
(c) A and B are not subsets of each other.

DEFINITION 10. Let A and B be sets in a universal set U. The union of A and B, written $A \cup B$, is the set of all elements that belong to either A or B or both. Symbolically:

$$A \cup B = \{x \in U | x \in A \lor x \in B\}$$

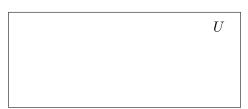
DEFINITION 11. Let A and B be sets in a universal set U. The *intersection* of A and B, written $A \cap B$, is the set of all elements in common with A and B. Symbolically:

$$A \cap B = \{ x \in U | x \in A \land x \in B \}$$



DEFINITION 12. Let A and B be sets. The complement of A in B denoted B - A, is

$$B - A = \{ x \in U | x \in B \land x \notin A \}$$



REMARK 13. For convenience, if U is a universal set and A is a subset in U, we will write $U - A = \overline{A}$, called simply the **complement** of A.

EXAMPLE 14. Let $U = \{0, 1, 2, \dots, 9, 10\}$ be a universal set, $A = \{0, 2, 4, 6, 8, 10\}$, and $B = \{1, 3, 5, 7, 9\}$. Find

$$(\overline{A \cap B}) \cap (\overline{A \cup B}).$$

set notation	=	\subset,\subseteq	U	\cap	$\overline{\Box}$	Ø	U
logical symbol							

Power set

DEFINITION 15. Let A be a set. The power set of A, written P(A), is the following set

 $P(A) = \{ X \mid X \subseteq A \}.$

In other words, P(A) is the set of all subsets of A (including \emptyset and A).

EXAMPLE 16. Find $P(\{x, y\})$ and fill in the blanks.

 $P(\{x,y\}) =$ (a) $\{x\} _ \{x,y\}$ (b) $\{x\} _ P(\{x,y\})$ (c) $\{\{x\}\} _ P(\{x,y\})$ (d) $\emptyset _ \{x,y\}$ (e) $\emptyset _ P(\{x,y\})$ (f) $\emptyset _ P(\{x,y\})$ (g) $\{\emptyset\} _ P(\{x,y\})$ EXAMPLE 17. Let $A = \{-1,0,1\}$.

1. Find all elements of power set of A.

2. Find |P(A)| (the number of subsets of A) and |P(P(A))| (the number of subsets of P(A)).

3. Write 3 subsets of A and 5 subsets of P(A).

4. What are |P(A)| and |P(P(A))| for an arbitrary set A?

EXAMPLE 18. Find

- (a) $P(\{\Delta\})$
- (b) $P(\emptyset)$
- (c) $P(P(\emptyset))$
- (d) $P(\{\Delta,\Box\})$
- (e) $P(\{\emptyset, \{\emptyset\}\})$

Cartesian Product

DEFINITION 19. Let A and B be sets. The **Cartesian product** of A and B, written $A \times B$, is the following set:

 $A \times B = \{(a, b) \mid a \in A \land b \in B\}.$

Informally, $A \times B$ is the set of **ordered** pairs of objects.

EXAMPLE 20. Given $A = \{0, 1\}$ and $B = \{4, 5, 6\}$.

- (a) Does the pair (6,1) belong to $A \times B$?
- (b) List the elements of $A \times B$.
- (c) What is the cardinality of $A \times B$?
- (d) List the elements of $A \times A \times A$ and $(A \times A) \times A$.
- (e) Does the triple (1, 6, 4) belong to $A \times B \times B$?
- (f) Describe the following sets $R \times R$, $R \times R \times R$.

Proofs Involving Sets

Proving set properties

Use the following tautologies:

- $x \in A \cap B \Leftrightarrow (x \in A \land x \in B)$
- $x \in A \cup B \Leftrightarrow (x \in A \lor x \in B)$
- $\bullet \ x \in \bar{A} \Leftrightarrow x \not\in A$
- $x \in A B \Leftrightarrow (x \in A \land x \notin B)$
- $A = B \Leftrightarrow (x \in A \Leftrightarrow x \in B)$
- $A \subseteq B \Leftrightarrow (x \in A \Rightarrow x \in B)$
- $(x, y) \in A \times B \Leftrightarrow (x \in A \land y \in B)$

Methods:

- To prove $A \subseteq B$ it is sufficient to prove $x \in A \Rightarrow x \in B$.
- To prove A = B it is sufficient to prove $x \in A \Leftrightarrow x \in B$.
- To prove A = B it is sufficient to prove $A \subseteq B$ and $B \subseteq A$.
- To show that $A = \emptyset$ it is sufficient to show that $x \in A$ implies a false statement.

Fundamental properties of sets

THEOREM 21. The following statements are true for all sets A, B, and C.

- 1. $A \cup B = B \cup A$ (commutative)
- 2. $A \cap B = B \cap A$ (commutative)
- 3. $(A \cup B) \cup C = A \cup (B \cup C)$ (associative)
- 4. $(A \cap B) \cap C = A \cap (B \cap C)$ (associative)
- 5. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributive)
- 6. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (distributive)

DeMorgan's Laws: If A and B are the sets contained in some universal set U then

- $\tilde{\gamma}. \ \overline{A \cup B} = \bar{A} \cap \bar{B}.$
- 8. $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

THEOREM 22. Let A and B be a subsets of a universal set U. Then

1. $\overline{\overline{A}} = A$.

2. $\overline{\emptyset} = U$.

3. $\overline{U} = \emptyset$

- 4. $A \subseteq A \cup B$.
- 5. $A \cap B \subseteq A$.
- 6. The empty set is a subset of every set. (Namely, for every set $A, \ \emptyset \subseteq A$. If $A \neq \emptyset$, then $\emptyset \subset A$.).

7. $A \cup \emptyset = A$.

8. $A \cap \emptyset = \emptyset$.

9. $A \cap A = A \cup A = A$

EXAMPLE 23. Let A and B be subsets of a universal set U. Show that $(A - B) \cap B = \emptyset$.

PROPOSITION 24. Let A and B be subsets of a universal set U. Then

$$A - B = A \cap \overline{B}.$$

EXAMPLE 25. Let A, B and C be sets. Prove that

$$A - (B \cup C) = (A - B) \cap (A - C)$$

EXAMPLE 26. For the sets A, B and C prove that

.

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

PROPOSITION 27. Let A, B, and C be sets, and suppose $A \subseteq B$ and $B \subseteq C$. Then $A \subseteq C$.

EXAMPLE 28. Let A, B, C and D be sets. If $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$.

EXAMPLE 29. Prove the following statement. Let A and B be subsets of a universal set U. Then $A \subseteq B \Leftrightarrow A \cup B = B$.

EXAMPLE 30. Let A and B be subsets of a universal set U. Prove that

 $A = A - B \Leftrightarrow A \cap B = \emptyset.$

4.3 Arbitrary unions and intersections

DEFINITION 31. Let I be a set. An indexed collection of sets $\{A_{\alpha}\}_{\alpha \in I}$ represents a collection of sets such that for every $\alpha \in I$, there is a corresponding set A_{α} . In this case we call I the indexed set.

Collection of sets	Indexed set	Shortened notation
$A_0, A_1, A_2, A_3, \dots, A_{2016}$		
B_3, B_6, B_9, B_{77}		
$C_5, C_{10}, C_{15}, \ldots, C_{2015}$		

• Union and Intersection

EXAMPLE 32. Complete the following

(a)
$$x \in \bigcup_{\alpha \in I} A_{\alpha} \Leftrightarrow \exists \alpha \in I \ni x \in A_{\alpha}$$

 $x \notin \bigcup_{\alpha \in I} A_{\alpha} \Leftrightarrow$

(b)
$$x \in \bigcap_{\alpha \in I} A_{\alpha} \Leftrightarrow \forall \alpha \in I, x \in A_{\alpha}$$

 $x \notin \bigcap_{\alpha \in I} A_{\alpha} \Leftrightarrow$

EXAMPLE 33. Given $B_i = \{i, i+1\}$ for i = 1, 2, ..., 10. Determine the following (a) $\bigcap_{i=1}^{10} B_i$

(b) $B_i \cap B_{i+1}$

(c)
$$\bigcap_{i=k}^{k+1} B_i$$
 where $1 \le k < 10$.

(d)
$$\bigcup_{i=j}^{k} B_i$$
 where $1 \le j < k \le 10$.

EXAMPLE 34. $A_n = \left\{ x \in \mathbf{R} | -\frac{1}{n} \le x \le \frac{1}{n} \right\}, \quad n \in \mathbf{Z}^+.$ Find $\bigcup_{n \in \mathbf{Z}^+} A_n$ and $\bigcap_{n \in \mathbf{Z}^+} A_n.$