5: The Integers (An introduction to Number Theory)

The Well Ordering Principle:

Every nonempty subset on \mathbf{Z}^{+}has a smallest element; that is, if S is a nonempty subset of Z^{+}, then there exists $a \in S$ such that $a \leq x$ for all $x \in S$.

PROPOSITION 1. There is no integer x such that $0<x<1$.
Proof.

COROLLARY 2. 1 is the smallest element of \mathbf{Z}^{+}.

5.2: Induction 1

THEOREM 3. (First Principle of Mathematical Induction) Let $P(n)$ be a statement about the positive integer n. Suppose that $P(1)$ is true. Whenever k is a positive integer for which $P(k)$ is true, then $P(k+1)$ is true. Then $P(n)$ is true for every positive integer n.

Proof.

[^0]Paradox: All horses are of the same color.
Question: What's wrong in the following "proof" of G. Pólya?
$P(n)$: Let $n \in \mathbf{Z}^{+}$. Within any set of n horses, there is only one color.
Basic Step. If there is only one horse, there is only one color.
Induction Hypothesis. Assume that within any set of k horses, there is only one color.
Inductive step. Prove that within any set of $k+1$ horses, there is only one color.
Indeed, look at any set of $k+1$ horses. Number them: $1,2,3, \ldots, k, k+1$. Consider the subsets $\{1,2,3, \ldots, k\}$ and $\{2,3,4, \ldots, k+1\}$. Each is a set of only k horses, therefore within each there is only one color. But the two sets overlap, so there must be only one color among all $k+1$ horses.

5.3: The Division Algorithm And Greatest Common Divisor

THEOREM 4. (Division Algorithm) Let $a \in \mathbf{Z}, b \in \mathbf{Z}^{+}$. Then there exist unique integers q and r such that

$$
a=b q+r, \quad \text { where } \quad 0 \leq r<b
$$

EXAMPLE 5. (a) Rewrite the Division Algorithm using symbols.
(b) Let $a=33, b=7$. Determine q and r.
(b) Let $a=-33, b=7$. Determine q and r.

COROLLARY 6. Let $b \in \mathbf{Z}^{+}$. Then for every integer a there exists a unique integer q such that exactly one of the following holds:

$$
a=b q, \quad a=b q+1, \quad a=b q+2, \ldots, a=b q+(b-1)
$$

COROLLARY 7. Every integer is either even, or odd.

Divisors (see Chapter 1, part II of notes)

Recall the following
DEFINITION 8. Let a and b be integers. We say that b divides a, written $b \mid a$, if there is an integer c such that $b c=a$. We say that b and c are factors of a, or that a is divisible by b and c.

Recall the following divisibility properties.
PROPOSITION 9. Let $a, b, c \in \mathbf{Z}$.
(a) If $a \mid 1$, then $a= \pm 1$.
(b) If $a \mid b$ and $b \mid a$, then $a= \pm b$.
(c) If $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$ for any $x, y \in \mathbf{Z}$.
(d) If $a \mid b$ and $b \mid c$, then $a \mid c$.

Greatest common divisor (gcd)

DEFINITION 10. Let a and b be integers, not both zero. The greatest common divisor of a and b (written $\operatorname{gcd}(a, b)$, or $(a, b))$ is the largest positive integer d that divides both a and b.

EXAMPLE 11. Find $\operatorname{gcd}(18,24)$.

EXAMPLE 12. (a) Compute

$$
\operatorname{gcd}(-18,24)=\quad \operatorname{gcd}(-24,-18)=
$$

and make a conclusion.
(b) Compute

$$
\operatorname{gcd}(5,0)=\quad \operatorname{gcd}(-5,0)=
$$

and make a conclusion.
(c) Complete the statement: If $a \neq 0$ and $b \neq 0$, then $\operatorname{gcd}(a, b) \leq$ \qquad
(d) Let $c \in \mathbf{Z}$. Then $\operatorname{gcd}(a, a c)=$ \qquad
Euclidean Algorithm is based on the following two lemmas:
LEMMA 13. Let a and b be two positive integers. If $a \mid b$ then $\operatorname{gcd}(a, b)=|a|$.

LEMMA 14. Let a and b be two positive integers such that $b \geq a$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b-a)$. Proof.

COROLLARY 15. Let a and b be integers, not both zero. Suppose that there exist integers q_{1} and r_{1} such that $b=a q_{1}+r_{1}, 0 \leq r_{1}<a$. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(a, r_{1}\right)$.

Procedure for finding gcd of two integers (the Euclidean Algorithm)

1. Given $a, b \in \mathbf{Z}^{+}$.
2. If $b \mid a$, then $\operatorname{gcd}(a, b)=b$, and $S T O P$.
3. If $b \nmid a$, then use the Division Algorithm to find $q, r \in \mathbf{Z}$ such that $a=b q+r$, where $0 \leq r<b$. Note that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
4. Repeat from step 2, replacing a by b and b by r.

EXAMPLE 16. Find $\operatorname{gcd}(1176,3087)$.

EXAMPLE 17. Find integers x and y such that $147=1176 x+3087 y$.

COROLLARY 18. If $d=\operatorname{gcd}(a, b)$ then there exist integers x and y such that $a x+b y=d$. Moreover, d is the minimal natural number with such property.

Relatively prime (or coprime) integers

DEFINITION 19. Two integers a and b, not both zero, are said to be relatively prime (or coprime), if $\operatorname{gcd}(a, b)=1$.

For example,

Combining the above definition and the proof of Corollary 18, we obtain
THEOREM 20. a and b are relatively prime integers if and only if there exist integers x and y such that $a x+b y=1$.

THEOREM 21. Let $a, b, c \in \mathbf{Z}$. Suppose $a \mid b c$ and $\operatorname{gcd}(a, b)=1$. Then $a \mid c$.
Proof.

5.4: Primes and Unique Factorization

DEFINITION 22. An integer p greater than 1 is called a prime number if the only divisors of p are ± 1 and $\pm p$. If an integer greater than 1 is not prime, it is called composite.

-7	-4	0	1	2	4	7	10209

Sieve of Eratosthenes.

The method to find all primes from 2 to n.

1. Write out all integers from 2 to n.
2. Select the smallest integer p that is not selected or crossed out.
3. Cross out all multiples of p (these will be $2 p, 3 p, 4 p, \ldots$; the p itself should not be crossed out).
4. If not all numbers are selected or crossed out return to step 2. Otherwise, all selected numbers are prime.

EXAMPLE 23. Find all two digit prime numbers.

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	

REMARK 24. It is sufficient to cross out the numbers in step 3 starting from p^{2}, as all the smaller multiples of p will have already been crossed out at that point. This means that the algorithm is allowed to terminate in step 4 when p^{2} is greater than n. In other words, if the number p in step 2 is greater than \sqrt{n} then all numbers that are already selected or not crossed out are prime.

Prime Factorization of a positive integer n greater than 1 is a decomposition of n into a product of primes.

Standard Form $n=p_{1} p_{2} \cdots p_{k}$, where primes $p_{1}, p_{2}, \ldots, p_{k}$ satisfy $p_{1} \leq p_{2} \leq \ldots \leq p_{k}$
Compact Standard Form $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{m}^{\alpha_{m}}$, where primes $p_{1}, p_{2}, \ldots, p_{m}$ satisfy $p_{1}<p_{2}<\ldots<p_{m}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \mathbf{Z}$.

EXAMPLE 25. Write 1224 and 225 in a standard form (i.e. find prime factorization).

LEMMA 26. Let a and b be integers. If p is prime and divides ab, then p divides either a, or b. (Note, p also may divide both a and b.)

Proof.

COROLLARY 27. Let $a_{1}, a_{2}, \ldots, a_{n}$ be integers.If p is prime and divides $a_{1} a_{2} \cdot \ldots \cdot a_{n}$, then p divides at least one integer from $a_{1}, a_{2}, \ldots, a_{n}$.

Note that Lemma 26 corresponds to $n=2$. General proof of the above Corollary is by induction.
THEOREM 28. (Second Principle of Mathematical Induction) Let $P(n)$ be a statement about the positive integer n. Suppose that $P(1)$ is true. Whenever k is a positive integer for which $P(i)$ is true for every positive integer i such that $i \leq k$, then $P(k+1)$ is true. Then $P(n)$ is true for every positive integer n.

Strategy

The proof by the Second Principle of Mathematical Induction consists of the following steps:
Basic Step: Verify that $P(1)$ is true.
Induction hypothesis: Assume that k is a positive integer for which $P(1), P(2), \ldots, P(k)$ are true .
Inductive Step: With the assumption made, prove that $P(k+1)$ is true.
Conclusion: $P(n)$ is true for every positive integer n.
THEOREM 29. Unique Prime Factorization Theorem. Let $n \in \mathbf{Z}, n>1$. Then n is a prime number or can be written as a product of prime numbers. Moreover, the product is unique, except for the order in which the factors appears.

Proof.
Existence: Use the Second Principle of Mathematical Induction.
$P(n)$:
Basic step:
Induction hypothesis:

Inductive step:

Uniqueness Use the Second Principle of Mathematical Induction.
$P(n)$:

Basic step:
Induction hypothesis:

COROLLARY 30. There are infinitely many prime numbers.
Proof.

EXAMPLE 31. Prove that if a is a positive integer of the form $4 n+3$, then at least one prime divisor of a is of the form $4 n+3$.

Proof

[^0]: ${ }^{1}$ see also notes for Chapter 1(Part III)

