5: The Integers (An introduction to Number Theory)

The Well Ordering Principle:

Every nonempty subset on \mathbb{Z}^+ has a smallest element; that is, if S is a nonempty subset of Z^+ , then there exists $a \in S$ such that $a \leq x$ for all $x \in S$.

PROPOSITION 1. There is no integer x such that 0 < x < 1.

Proof.

COROLLARY 2. 1 is the smallest element of \mathbf{Z}^+ .

5.2: Induction¹

THEOREM 3. (First Principle of Mathematical Induction) Let P(n) be a statement about the positive integer n. Suppose that P(1) is true. Whenever k is a positive integer for which P(k) is true, then P(k+1) is true. Then P(n) is true for every positive integer n.

Proof.

¹see also notes for Chapter 1(Part III)

Paradox: All horses are of the same color.

Question: What's wrong in the following "proof" of G. Pólya?

P(n): Let $n \in \mathbb{Z}^+$. Within any set of n horses, there is only one color.

Basic Step. If there is only one horse, there is only one color.

Induction Hypothesis. Assume that within any set of k horses, there is only one color.

Inductive step. Prove that within any set of k + 1 horses, there is only one color.

Indeed, look at any set of k+1 horses. Number them: 1, 2, 3, ..., k, k+1. Consider the subsets $\{1, 2, 3, ..., k\}$ and $\{2, 3, 4, ..., k+1\}$. Each is a set of only k horses, therefore within each there is only one color. But the two sets overlap, so there must be only one color among all k+1 horses.

5.3: The Division Algorithm And Greatest Common Divisor

THEOREM 4. (Division Algorithm) Let $a \in \mathbb{Z}$, $b \in \mathbb{Z}^+$. Then there exist <u>unique</u> integers q and r such that

a = bq + r, where $0 \le r < b$.

EXAMPLE 5. (a) Rewrite the Division Algorithm using symbols.

(b) Let a = 33, b = 7. Determine q and r.

(b) Let a = -33, b = 7. Determine q and r.

COROLLARY 6. Let $b \in \mathbb{Z}^+$. Then for every integer a there exists a unique integer q such that exactly one of the following holds:

$$a = bq$$
, $a = bq + 1$, $a = bq + 2$, ..., $a = bq + (b - 1)$.

COROLLARY 7. Every integer is either even, or odd.

Divisors (see Chapter 1, part II of notes)

Recall the following

DEFINITION 8. Let a and b be integers. We say that b divides a, written b|a, if there is an integer c such that bc = a. We say that b and c are factors of a, or that a is divisible by b and c.

Recall the following divisibility properties.

PROPOSITION 9. Let $a, b, c \in \mathbb{Z}$.

(a) If a|1, then $a = \pm 1$.

- (b) If a|b and b|a, then $a = \pm b$.
- (c) If a|b and a|c, then a|(bx + cy) for any $x, y \in \mathbb{Z}$.
- (d) If a|b and b|c, then a|c.

Greatest common divisor (gcd)

DEFINITION 10. Let a and b be integers, not both zero. The greatest common divisor of a and b (written gcd(a,b), or (a,b)) is the largest positive integer d that divides both a and b.

EXAMPLE 11. Find gcd(18, 24).

EXAMPLE 12. (a) Compute

$$gcd(-18, 24) = gcd(-24, -18) =$$

and make a conclusion.

(b) Compute

$$gcd(5,0) = gcd(-5,0) =$$

and make a conclusion.

(c) Complete the statement: If $a \neq 0$ and $b \neq 0$, then $gcd(a,b) \leq$

(d) Let $c \in \mathbf{Z}$. Then gcd(a, ac) =_____

Euclidean Algorithm is based on the following two lemmas:

LEMMA 13. Let a and b be two positive integers. If a|b then gcd(a,b) = |a|.

LEMMA 14. Let a and b be two positive integers such that $b \ge a$. Then gcd(a, b) = gcd(a, b - a). Proof.

COROLLARY 15. Let a and b be integers, not both zero. Suppose that there exist integers q_1 and r_1 such that $b = aq_1 + r_1$, $0 \le r_1 < a$. Then $gcd(a, b) = gcd(a, r_1)$.

Procedure for finding gcd of two integers (the Euclidean Algorithm)

- 1. Given $a, b \in \mathbf{Z}^+$.
- 2. If b|a, then gcd(a, b) = b, and STOP.
- 3. If $b \not| a$, then use the Division Algorithm to find $q, r \in \mathbb{Z}$ such that a = bq + r, where $0 \le r < b$. Note that gcd(a, b) = gcd(b, r).
- 4. Repeat from step 2, replacing a by b and b by r.

EXAMPLE 16. *Find* gcd(1176, 3087).

EXAMPLE 17. Find integers x and y such that 147 = 1176x + 3087y.

COROLLARY 18. If d = gcd(a, b) then there exist integers x and y such that ax + by = d. Moreover, d is the minimal natural number with such property.

Relatively prime (or coprime) integers

DEFINITION 19. Two integers a and b, not both zero, are said to be relatively prime (or coprime), if gcd(a, b) = 1.

For example,

Combining the above definition and the proof of Corollary 18, we obtain

THEOREM 20. a and b are relatively prime integers if and only if there exist integers x and y such that ax + by = 1.

THEOREM 21. Let $a, b, c \in \mathbb{Z}$. Suppose a|bc and gcd(a, b) = 1. Then a|c.

Proof.

5.4: Primes and Unique Factorization

DEFINITION 22. An integer p greater than 1 is called a **prime** number if the only divisors of p are ± 1 and $\pm p$. If an integer greater than 1 is not prime, it is called **composite**.

-7	-4	0	1	2	4	7	10209		

Sieve of Eratosthenes.

The method to find all primes from 2 to n.

- 1. Write out all integers from 2 to n.
- 2. Select the smallest integer p that is not selected or crossed out.
- 3. Cross out all multiples of p (these will be $2p, 3p, 4p, \ldots$; the p itself should not be crossed out).
- 4. If not all numbers are selected or crossed out return to step 2. Otherwise, all selected numbers are prime.

EXAMPLE 23. Find all two digit prime numbers.

	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	

REMARK 24. It is sufficient to cross out the numbers in step 3 starting from p^2 , as all the smaller multiples of p will have already been crossed out at that point. This means that the algorithm is allowed to terminate in step 4 when p^2 is greater than n. In other words, if the number p in step 2 is greater than \sqrt{n} then all numbers that are already selected or <u>not</u> crossed out are prime.

Prime Factorization of a positive integer n greater than 1 is a decomposition of n into a product of primes.

Standard Form $n = p_1 p_2 \cdots p_k$, where primes p_1, p_2, \ldots, p_k satisfy $p_1 \leq p_2 \leq \ldots \leq p_k$

Compact Standard Form $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$, where primes p_1, p_2, \ldots, p_m satisfy $p_1 < p_2 < \ldots < p_m$ and $\alpha_1, \alpha_2, \ldots, \alpha_m \in \mathbf{Z}$.

EXAMPLE 25. Write 1224 and 225 in a standard form (i.e. find prime factorization).

LEMMA 26. Let a and b be integers. If p is prime and divides ab, then p divides either a, or b. (Note, p also may divide both a and b.)

Proof.

COROLLARY 27. Let a_1, a_2, \ldots, a_n be integers. If p is prime and divides $a_1a_2 \cdot \ldots \cdot a_n$, then p divides at least one integer from a_1, a_2, \ldots, a_n .

Note that Lemma 26 corresponds to n = 2. General proof of the above Corollary is by induction.

THEOREM 28. (Second Principle of Mathematical Induction) Let P(n) be a statement about the positive integer n. Suppose that P(1) is true. Whenever k is a positive integer for which P(i) is true for every positive integer i such that $i \leq k$, then P(k+1) is true. Then P(n) is true for every positive integer n.

Strategy

The proof by the Second Principle of Mathematical Induction consists of the following steps:

Basic Step: Verify that P(1) is true.

Induction hypothesis: Assume that k is a positive integer for which $P(1), P(2), \ldots, P(k)$ are true.

Inductive Step: With the assumption made, prove that P(k+1) is true.

Conclusion: P(n) is true for every positive integer n.

THEOREM 29. Unique Prime Factorization Theorem. Let $n \in \mathbb{Z}$, n > 1. Then n is a prime number or can be written as a product of prime numbers. Moreover, the product is unique, except for the order in which the factors appears.

Proof.

Existence: Use the Second Principle of Mathematical Induction.

P(n): Basic step: Induction hypothesis: Inductive step:

Uniqueness Use the Second Principle of Mathematical Induction. P(n) :

Basic step: Induction hypothesis: COROLLARY 30. There are infinitely many prime numbers.

Proof.

EXAMPLE 31. Prove that if a is a positive integer of the form 4n + 3, then at least one prime divisor of a is of the form 4n + 3.

Proof