Chapter 5: The Integers

5.1: Axioms and Basic Properties

Operations on the set of integers, Z: addition and multiplication with the following properties:

- **A1.** Addition is **associative**:
- **A2.** Addition is **commutative**:
- **A3. Z** has an **identity** element with respect to addition namely, the integer 0.
- **A4.** Every integer x in **Z** has an **inverse** w.r.t. addition, namely, its negative -x:
- **A5.** Multiplication is **associative**:
- **A6.** Multiplication is **commutative**:
- A7. Z has an identity element with respect to multiplication namely, the integer 1. (and $1 \neq 0$.)
- A8. Distributive Law:

REMARK 1. We do not prove A1-A8. We take them as **axioms**: statements we *assume* to be true about the integers.

We use xy instead $x \cdot y$ and x - y instead x + (-y).

PROPOSITION 2. Let $a, b, c \in \mathbf{Z}$.

- **P1.** If a + b = a + c then b = c. (cancellation law for addition)
- **P2.** $a \cdot 0 = 0 \cdot a = 0$.
- **P3.** (-a)b = a(-b) = -(ab)
- **P4.** -(-a) = a
- **P5.** (-a)(-b) = ab
- **P6.** a(b-c) = ab bc
- **P7.** (-1)a = -a
- **P8.** (-1)(-1) = 1.

Proof

 ${f Z}$ contains a subset ${f Z}^+$, called the **positive integers**, that has the following properties:

A9. Closure property: \mathbf{Z}^+ is closed w.r.t. addition and multiplication:

A10. Trichotomy Law: for all $x \in \mathbb{Z}$ exactly one is true:

PROPOSITION 3. If $x \in \mathbf{Z}$, $x \neq 0$, then $x^2 \in \mathbf{Z}^+$. Proof.

COROLLARY 4. $\mathbf{Z}^{+} = \{1, 2, 3, \dots, n, n+1, \dots\}$ *Proof.*

Inequalities (the order relation less than)

DEFINITION 5. For $x, y \in \mathbf{Z}$, x < y if and only $y - x \in \mathbf{Z}^+$.

Note that $\mathbf{Z}^+ = \{n \in \mathbf{Z} | n > 0\}$.

PROPOSITION 6. For all $a, b \in \mathbf{Z}$:

- **Q1.** Exactly one of the following holds: a < b, b < a, or a = b.
- **Q2.** If a > 0 then -a < 0; if a < 0 then -a > 0.
- **Q3.** If a > 0 and b > 0 then a + b > 0 and ab > 0.
- **Q4.** If a < 0 and b < 0 then a + b < 0 and ab > 0.

Proof.

A11. The Well Ordering Principle Every nonempty subset on \mathbb{Z}^+ has a smallest element; that is, if S is a nonempty subset of Z^+ , then there exists $a \in S$ such that $a \leq x$ for all $x \in S$.

PROPOSITION 7. There is no integer x such that 0 < x < 1.

COROLLARY 8. 1 is the smallest element of \mathbf{Z}^+ .

COROLLARY 9. The only integers having multiplicative inverses in \mathbf{Z} are ± 1 .

Proof.

5.2: Induction

THEOREM 10. (First Principle of Mathematical Induction) Let P(n) be a statement about the positive integer n. Suppose that P(1) is true. Whenever k is a positive integer for which P(k) is true, then P(k+1) is true. Then P(n) is true for every positive integer n.

Strategy

The proof by induction consists of three steps:

Basic Step. Verify that P(1) is true.

Induction hypothesis. Assume that P(k) is true.

Inductive Step. With the assumption made, prove that P(k+1) is true.

EXAMPLE 11. Prove by induction the formula for the sum of the first n positive integers

$$1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}.$$
 (1)

EXAMPLE 12. Prove by induction the formula for the sum of the first 2n + 1 odd numbers.

EXAMPLE 13. Prove by induction the following formula

$$1^{2} + 2^{2} + 3^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

Paradox: All horses are of the same color.

Question: What's wrong in the following "proof" of G. Pólya?

Basic Step. If there is only one horse, there is only one color.

Inductive step. Assume as induction hypothesis that within any set of n horses, there is only one color. Now look at any set of k+1 horses. Number them: 1, 2, 3, ..., k, k+1. Consider the sets $\{1, 2, 3, ..., k\}$ and $\{2, 3, 4, ..., k+1\}$. Each is a set of only n horses, therefore within each there is only one color. But the two sets overlap, so there must be only one color among all k+1 horses.

5.3: The Division Algorithm And Greatest Common Divisor

Recall

A11. The Well Ordering Principle Every nonempty subset on \mathbb{Z}^+ has a smallest element; that is, if S is a nonempty subset of Z^+ , then there exists $a \in S$ such that $a \leq x$ for all $x \in S$.

THEOREM 14. (Division Algorithm) Let $a \in \mathbf{Z}$, $b \in \mathbf{Z}^+$. Then there exist <u>unique</u> integers q and r such that

$$a = bq + r$$
, where $0 \le r < b$.

Divisors

DEFINITION 15. Let a and b be integers. We say that b divides a, written b|a, if there is an integer c such that bc = a. We say that b and c are factors of a, or that a is divisible by b and c.

For example,

EXAMPLE 16. Prove that $3|4^n - 1$, where $n \in \mathbb{Z}^+$.

Greatest common divisor (gcd)

DEFINITION 17. Let a and b be integers, not both zero. The greatest common divisor of a and b (written gcd(a,b), or (a,b)) is the largest positive integer d that divides both a and b.

EXAMPLE 18. $Find \gcd(18, 24)$.

Euclidean Algorithm

is based on the following two lemmas:

LEMMA 19. Let a and b be integers. If a|b then gcd(a,b) = a.

LEMMA 20. Let a and b be two positive integers such that $b \ge a$. Then gcd(a, b) = gcd(a, b - a).

Proof.

COROLLARY 21. Let a and b be integers, not both zero. Suppose that there exist integers q_1 and r_1 such that $b = aq_1 + r_1$, $0 \le r_1 < a$. Then $gcd(a, b) = gcd(a, r_1)$.

Procedure for finding gcd of two integers (the Euclidean Algorithm)

EXAMPLE 22. *Find* gcd(1176, 3087).

EXAMPLE 23. Find integers x and y such that 147 = 1176x + 3087y.

COROLLARY 24. If $d = \gcd(a, b)$ then there exist integers x and y such that ax + by = d. Moreover, d is the minimal natural number with such property.

Relatively prime (or coprime) integers

DEFINITION 25. Two integers a and b, not both zero, are said to be relatively prime (or coprime), if gcd(a, b) = 1.

For example,

Combining the above definition and the proof of Corollary 24, we obtain

THEOREM 26. a and b are relatively prime integers if and only if there exist integers x and y such that ax + by = 1.

THEOREM 27. Let $a, b, c \in \mathbf{Z}$. Suppose a|bc and $\gcd(a, b) = 1$. Then a|c.

5.4: Primes and Unique Factorization

DEFINITION 28. An integer p greater than 1 is called a **prime** number if the only divisors of p are ± 1 and $\pm p$. If an integer greater than 1 is not prime, it is called **composite**.

For example,

Sieve of Eratosthenes.

The method to find all primes from 2 to n.

- 1. Write out all integers from 2 to n.
- 2. Select the smallest integer k that is not selected or crossed out.
- 3. Cross out all multiples of k.
- 4. If not all numbers are selected or crossed out return to step 2. Otherwise, all selected numbers are prime.

EXAMPLE 29. Find all two digit prime numbers.

```
3
              4
                  5
                       6
                                8
                                         10
                                             11
                                                  12
                                                      13
                                                           14
                                                               15
                                                                    16
                                                                        17
                                                                             18
                                                                                  19
                                                                                      20
    22
         23
             24
                  25
                               28
                                    29
                                         30
                                             31
                                                  32
                                                      33
                                                               35
                                                                    36
                                                                             38
                                                                                  39
                                                                                      40
21
                      26
                           27
                                                           34
                                                                         37
    42
         43
             44
                  45
                      46
                           47
                               48
                                    49
                                         50
                                             51
                                                  52
                                                      53
                                                           54
                                                               55
                                                                    56
                                                                         57
                                                                             58
                                                                                  59
                                                                                      60
61
    62
         63
             64
                  65
                      66
                           67
                               68
                                    69
                                         70
                                             71
                                                  72
                                                      73
                                                           74
                                                               75
                                                                    76
                                                                         77
                                                                             78
                                                                                  79
                                                                                      80
    82
         83
             84
                  85
                      86
                           87
                               88
                                    89
                                         90
                                             91
                                                 92
                                                      93
                                                           94
                                                               95
                                                                    96
                                                                        97
                                                                             98
                                                                                 99
```

REMARK 30. If the number k in step 2 is greater than \sqrt{n} then all numbers that are already selected or <u>not</u> crossed out are prime.

Prime Factorization of a positive integer n greater than 1 is a decomposition of n into a product of primes.

THEOREM 31. Unique Prime Factorization Theorem. Any positive integer n greater than one admits a prime factorization. This factorization is unique up to rearranging of the factors.

EXAMPLE 32. Write 1224 in standard form (i.e. find its prime factorization).

LEMMA 33. Let a and b be integers. If p is prime and divides ab, then p divides either a, or b. (Note, p also may divide both a and b.)

Proof.

COROLLARY 34. Let a_1, a_2, \ldots, a_n be integers. If p is prime and divides $a_1 a_2 \cdot \ldots \cdot a_n$, then p divides at least one integer from a_1, a_2, \ldots, a_n .

Note that Lemma 33 corresponds to n=2. General proof of the above Corollary is by induction.

THEOREM 35. (Second Principle of Mathematical Induction) Let P(n) be a statement about the positive integer n. Suppose that P(1) is true. Whenever k is a positive integer for which P(i) is true for every positive integer i such that $i \leq k$, then P(k+1) is true. Then P(n) is true for every positive integer n.

THEOREM 36. Unique Prime Factorization Theorem. Any positive integer n greater than one admits a prime factorization. This factorization is unique up to rearranging of the factors.

Proof of the Unique Prime Factorization Theorem.

Existence: Use the Second Principle of Mathematical Induction.

P(n):

Basic step:

Induction hypothesis:

Case 1: k+1 is prime

Case 1: k+1 is composite

Uniqueness Use the Second Principle of Mathematical Induction. P(n):

Basic step:

Induction hypothesis:

 ${\bf COROLLARY~37}.~\it There~is~infinitely~many~prime~numbers.$

EXAMPLE 38. Prove that if a is a positive integer of the form 4n + 3, then at least one prime divisor of a is of the form 4n + 3.