5.5: Congruences

Congruences and their properties

Discuss the following problem:

EXAMPLE 1. Are there any integers x and y such that $x^2 = 4y + 3$?

Recall that congruence mod n is an equivalence relation on \mathbf{Z} , i.e.

- 1.
- 2.
- 3.

PROPOSITION 2. Let $a, b, c, d \in \mathbf{Z}$ and let $n \in \mathbf{Z}^+$. Then

- 1. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $a + c \equiv b + d \pmod{n}$.
- 2. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $ac \equiv bd \pmod{n}$.
- 3. If $ab \equiv ac \pmod{n}$ and gcd(a, n) = 1 then $b \equiv c \pmod{n}$.

Proof.

REMARK 3. If $gcd(a, n) \neq 1$, then (3) maybe false.

COROLLARY 4. If $a \equiv b \pmod{n}$ then $a^k \equiv b^k \pmod{n}$ for every $k \in \mathbf{Z}^+$.

 ${\rm EXAMPLE~5.~\textit{Prove that}~7|6^{1000}-1~\textit{and}~7|6^{1001}+1.}$

EXAMPLE 6. What is the last digit of 7^{1258} ?

PROPOSITION 7. Let $n \in \mathbf{Z}$, n > 1. If $a \in \mathbf{Z}$, then a is congruent modulo n to exactly one of the integers $0, 1, 2, \ldots, n-1$.

EXAMPLE 8. Show that square of any integer is congruent to 0 or to 1 (modulo 4). Then derive another proof of Example 1.

Recall the definition of **congruence class** of a modulo n:

$$[a] = \{x \in \mathbf{Z} | x \equiv a \pmod{n} \}.$$

Note that

- 1. For any integer a, [a] is a set, not an integer.
- 2. If $0 \le a < n$, then [a] can be described as the set of integers that give a remainder of a when divided by n. (In this case we call a a standard representative of [a].)
- 3. If [a] = [b], it does not mean a = b, only that $a \equiv b \pmod{n}$ or that a and b give the same reminder when divided by n.

The set of congruence classes. Modular Arithmetic

Consider the following partition of **Z** by set of congruence classes:

$$\mathbf{Z}_n = \{[0], [1], [2], \dots, [n-1]\}$$

Addition on Z_n : [a] + [b] = [a + b]

Multiplication on \mathbf{Z}_n : [a][b] = [ab]

EXAMPLE 9. Give addition and multiplication tables for \mathbf{Z}_n for n = 2, 3.

	+	[0]	[1]
n = 2	[0]		
	[1]		

•	[0]	[1]
[0]		
[1]		

•	[0]	[1]	[2]
[0]			
[1]			
[2]			

EXAMPLE 10. Compute

(a) in \mathbb{Z}_6 ,

$$[2][3] =$$

$$[2][4] =$$

(b) in Z_{11} ,

$$[6][7] =$$

$$[25] + [22] =$$

THEOREM 11. Let $n \in \mathbf{Z}$, n > 1.

- 1. Addition in \mathbf{Z}_n is commutative
- 2. Addition in \mathbf{Z}_n is associative
- 3. [0] is the identity of \mathbf{Z}_n w.r.t. addition:
- 4. Every element of \mathbf{Z}_n has an inverse w.r.t. addition. Namely, for every $a \in \mathbf{Z}$ the additive inverse of [a] is [-a].

THEOREM 12. Let $n \in \mathbf{Z}$, n > 1.

- 1. Multiplication in \mathbf{Z}_n is commutative
- 2. Multiplication in \mathbf{Z}_n is associative
- 3. [1] is the multiplicative identity of \mathbf{Z}_n :
- 4. The following distributive laws hold:

$$[a]([b] + [c]) =$$

$$([a] + [b])[c] =$$

DEFINITION 13. An element $[a] \in \mathbf{Z}_n$ has an inverse w.r.t. multiplication if there exists $[x] \in \mathbf{Z}_n$ such that [a][x] = [1].

EXAMPLE 14. [5] is invertible in \mathbb{Z}_9 because

However, [3] and [6] are not invertible in \mathbf{Z}_9 because

THEOREM 15. Let $[a] \in \mathbf{Z}_n$. Then [a] has a multiplicative inverse if and only if a and n are relatively prime, i.e. gcd(a, n) = 1.

Proof.

EXAMPLE 16. (a) Is [51] invertible in \mathbf{Z}_{65} w.r.t. multiplication? If yes, find its inverse.

(b) Find the least positive integer x that satisfies the following congruence $51x \equiv 3 \pmod{65}$

Fermat's Little Theorem

Question: Which of the following are true for any integer a?

- $\bullet \ 2|a^2 a$
- $3|a^3 a$
- $4|a^4 a$
- $5|a^5 a$

Fermat's Little Theorem. For any prime integer p and $a \in \mathbb{Z}$,

$$p|a^p-a$$
.

Equivalently

Alternative version of Fermat's Little Theorem. For any prime integer p and $a \in \mathbb{Z}$ such that a and p are relatively prime, i.e. gcd(a, p) = 1, one has

$$p|a^{p-1} - 1$$
 or $a^{p-1} \equiv 1 \pmod{p}$.

EXAMPLE 17. Find the remainder if 7^{985} is divided by 13.