5.5 FUNCTIONS AND SETS

Image of a Set

DEFINITION 1. Let $f: X \rightarrow Y$ be a function. If $A \subseteq X$, we define $f(A)$, the image of A under f, by

$$
f(A)=\{y \in Y \mid y=f(x) \text { for some } x \in A\} .
$$

EXAMPLE 2. Let $f: X \rightarrow Y$. Complete:
(a) If $A \subseteq X$ then $f(A) \subseteq$ \qquad \subseteq \qquad
(b) $f(X)=$ \qquad
(c) $y \in f(A) \Leftrightarrow$ \qquad
(d) $y \notin f(A) \Leftrightarrow$ \qquad
EXAMPLE 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\cos x$. Find the following
(a) $f([-\pi / 2, \pi / 2])=$
(b) $f([-\pi / 2,0])=$
(c) $f([-\pi / 2, \pi / 2017])=$
(d) $f([-\pi / 4, \pi / 4])=$
(e) Does $-\frac{1}{2017}$ belong to $f([-\pi / 2, \pi / 2])$?
(f) $f(0)=\quad, f(\{0\})=, \quad f(\{-\pi / 4, \pi / 4\})=$

Inverse Image

DEFINITION 4. Let $f: X \rightarrow Y$ be a function and let B be a subset of its codomain (i.e. $B \subseteq Y$). Then the inverse image of B (written $\left.f^{-1}(B)\right)$ is the set

$$
f^{-1}(B)=\{x \in X \mid f(x) \in B\}
$$

The inverse image $f^{-1}(B)$ is a subset of domain of f containing all preimages of points from B under f. EXAMPLE 5. Let $f: X \rightarrow Y$ and $B \subseteq Y$. Complete:
(a) $f^{-1}(B) \subseteq$ \qquad
(b) $x \in f^{-1}(B) \Leftrightarrow$ \qquad
(c) $x \notin f^{-1}(B) \Leftrightarrow$ \qquad
(d) If $x \in X$ and $y \in Y$, then

$$
f(x) _\quad Y, \quad f(\{x\}) _\quad Y, \quad, f^{-1}(y) _\quad X, \quad f^{-1}(\{y\}) \ldots \quad X,
$$

EXAMPLE 6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{4}$. Find the following:
(a) $f([1,2])=$
(b) $f([-2,-1])=$
(c) $f^{-1}([1,16])=$
(d) $f^{-1}([-16,-1])=$
(e) $f^{-1}([-1,1])=$
(f) $f^{-1}(\mathbb{R})=$
(g) $f^{-1}\left(\mathbb{R}^{+}\right)=$
(i) $f^{-1}(\{16\})=\quad, f^{-1}(\{-16\})=\quad, f^{-1}(\{-16,16\})=\quad, f^{-1}(16)=$

EXAMPLE 7. Let $A \subseteq \operatorname{dom}(f)$ and $B \subset \operatorname{codom}(f)$. Determine the truth or falsehood of the following
(a) $f^{-1}(f(A))=A$
(b) $f\left(f^{-1}(B)\right)=B$

EXAMPLE 8. Let $A_{1}, A_{2} \subseteq \operatorname{dom}(f)$. Determine the truth or falsehood of the following

$$
f\left(A_{1}\right) \cap f\left(A_{2}\right)=f\left(A_{1} \cap A_{2}\right)
$$

Summary

Let $f: X \rightarrow Y$ and $A \subseteq X$ and $B \subseteq Y$. Then above definitions imply the following tautologies

- $\forall y \in Y,((y \in \operatorname{ran}(f)) \Leftrightarrow(\exists x \in X \ni f(x)=y))$.
- $\forall y \in Y,((y \in f(A)) \Leftrightarrow(\exists x \in A \ni f(x)=y))$.
- $\forall x \in X,\left(\left(x \in f^{-1}(B)\right) \Leftrightarrow(f(x) \in B)\right)$.

Also note that

- If $B \subseteq \operatorname{ran}(f)$ then $\left(S=f^{-1}(B)\right) \Rightarrow(f(S)=B)$.

EXAMPLE 9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=3 x+4$ and let $B=\{x \in \mathbb{R} \mid x>0\}$. Find $f^{-1}(B)$. Justify your answer (give a formal proof).

EXAMPLE 10. $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=5 x-4$. Find $f([0,1])$. Justify your answer (give a formal proof).

PROPOSITION 11. Let $f: X \rightarrow Y$. If $A_{1} \subseteq A_{2} \subseteq X$ then $f\left(A_{1}\right) \subseteq f\left(A_{2}\right)$.
Proof.

PROPOSITION 12. Let $f: X \rightarrow Y$. If B_{1} and B_{2} are subsets of Y then

$$
f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)
$$

Proof.

EXAMPLE 13. (cf. Example 8.) Let $f: X \rightarrow Y$ and A_{1} and A_{2} be subsets of X.
(a) Prove that $f\left(A_{1} \cap A_{2}\right) \subseteq f\left(A_{1}\right) \cap f\left(A_{2}\right)$.
(b) Prove that if, in addition, f is an injective function, then $f\left(A_{1} \cap A_{2}\right)=f\left(A_{1}\right) \cap f\left(A_{2}\right)$.

EXAMPLE 14. (cf. Example 7.) Let $f: X \rightarrow Y$ and B be a subset of Y.
(a) Prove that $f\left(f^{-1}(B)\right) \subseteq B$.
(b) Prove that if, in addition, f is an surjective function, then $f\left(f^{-1}(B)=B\right.$.

