6: An introduction to Number Theory

6.1 The Division ALgorithm and the Well-Ordering Principle.

The Well Ordering Principle (WOP):

Every nonempty subset on \mathbb{Z}^+ has a smallest element; that is, if S is a nonempty subset of Z^+ , then there exists $a \in S$ such that $a \leq x$ for all $x \in S$.

THEOREM 1. (First Principle of Mathematical Induction) Let P(n) be a statement about the positive integer n. Suppose that P(1) is true. Whenever k is a positive integer for which P(k) is true, then P(k+1) is true. Then P(n) is true for every positive integer n.

THEOREM 2. The well-ordering principle implies the principle of mathematical induction.

Proof.

REMARK 3. Note that the converse of the above result is also true: the well-ordering principle can be derived from the principle of mathematical induction. So, the two principles are logically equivalent.

Some useful variations of PMI

THEOREM 4. (A Modified Principle of Mathematical Induction) Let P(n) be a statement about the positive integer n. Suppose that there is an integer n_0 such that $P(n_0)$ is true and whenever k is a positive integer such that $k \ge n_0$, if P(k) is true, then P(k+1) is true. Then P(n) is true for every positive integer $n \ge n_0$.

THEOREM 5. (The Strong Principle of Mathematical Induction) Let P(n) be a statement about the positive integer n. Suppose that P(1) is true. Whenever k is a positive integer for which P(i) is true for every positive integer i such that $i \leq k$, then P(k+1) is true. Then P(n) is true for every positive integer n.

THEOREM 6. (Division Algorithm) Let $a \in \mathbb{Z}$, $b \in \mathbb{Z}^+$. Then there exist <u>unique</u> integers q and r such that

$$a = bq + r$$
, where $0 \le r < b$.

EXAMPLE 7. (a) Rewrite the Division Algorithm using symbols.

(b) Let a = 33, b = 7. Determine q and r.

(b) Let a = -33, b = 7. Determine q and r.

COROLLARY 8. Let $b \in \mathbb{Z}^+$. Then for every integer a there exists a unique integer q such that exactly one of the following holds:

a = bq, a = bq + 1, a = bq + 2, ..., a = bq + (b - 1).

COROLLARY 9. Every integer is either even, or odd.

EXAMPLE 10. Prove that the square of any integer has one of the forms 4k or 4k + 1, where $k \in \mathbb{Z}$.

6.2 Greatest common divisors and the Euclidean Algorithm

DEFINITION 11. Let a and b be integers, not both zero. The greatest common divisor of a and b (written gcd(a,b), or (a,b)) is the largest positive integer d that divides both a and b.

EXAMPLE 12. Find gcd(18, 24).

EXAMPLE 13. (a) Compute

$$gcd(-18, 24) = gcd(-24, -18) =$$

and make a conclusion.

(b) Compute

$$gcd(5,0) = gcd(-5,0) =$$

and make a conclusion.

- (c) Complete the statement: If $a \neq 0$ and $b \neq 0$, then $gcd(a, b) \leq$
- (d) Let $c \in \mathbb{Z}$. Then gcd(a, ac) =_____

Euclidean Algorithm is based on the following

LEMMA 14. Let a and b be integers, not both zero. Suppose we have integers q and r such that a = bq+r. Then gcd(a,b) = gcd(b,r).

Procedure for finding gcd of two integers (the Euclidean Algorithm)

- 1. Given $a, b \in \mathbb{Z}^+$ (a > b).
- 2. If b|a, then gcd(a, b) = b, and STOP.
- 3. If $b \not| a$, then use the Division Algorithm to find $q, r \in \mathbb{Z}$ such that a = bq + r, where $0 \le r < b$. Note that gcd(a, b) = gcd(b, r).
- 4. Repeat from step 2, replacing a by b and b by r.

EXAMPLE 15. *Find* gcd(1176, 3087).

EXAMPLE 16. Find integers x and y such that 147 = 1176x + 3087y.

DEFINITION 17. Let $a, b \in \mathbb{Z}$. The integer n is a integral linear combination of a and b if there exist integers x and y such that n = ax + by.

The integer 147 is an integral linear combination of _____ and ____. Also, the integer 147 is an integral linear combination of _____ and ____. COROLLARY 18. If d = gcd(a, b) then there exist integers x and y such that ax + by = d, i.e. d is an integral linear combination of a and b.

6.3 Relatively prime (coprime) integers and the Fundamental Theorem of Arithmetic

DEFINITION 19. Two integers a and b, not both zero, are said to be relatively prime (or coprime), if gcd(a, b) = 1.

For example,

THEOREM 20. The numbers a and b are relatively prime integers if and only if there exist integers x and y such that ax + by = 1.

Proof.

THEOREM 21. (Euclid's Lemma) Let $a, b, c \in \mathbb{Z}$. Suppose a|bc| and gcd(a, b) = 1. Then a|c.

EXAMPLE 22. Suppose that gcd(a, c) = gcd(b, c) = 1. Prove that gcd(ab, c) = 1.

EXAMPLE 23. Prove that for every integer n, gcd(n, n + 1) = 1.

DEFINITION 24. An integer p greater than 1 is called a **prime** number if the only divisors of p are ± 1 and $\pm p$. If an integer greater than 1 is not prime, it is called **composite**.

-7	-4	0	1	2	4	7	10209

Note that if p is prime, then for every $a \in \mathbb{Z}$, we have

$$gcd(p,a) = \begin{cases} p, & \text{if } p|a\\ 1, & \text{if } p \not|a \end{cases}$$

LEMMA 25. Let a and b be integers. If p is prime and divides ab, then p divides either a, or b. (Note, p also may divide both a and b.)

Proof.

COROLLARY 26. Let a_1, a_2, \ldots, a_n be integers. If p is prime and divides $a_1a_2 \cdot \ldots \cdot a_n$, then p divides at least one integer from a_1, a_2, \ldots, a_n . (In other words, there exists $i \in \mathbb{Z}$, $1 \leq i \leq n$, such that $p|a_i$.)

Note that Lemma 25 corresponds to n = 2. General proof of the above Corollary is by induction.

COROLLARY 27. Let $a \in \mathbb{Z}$ and p be a prime number. If $p|a^n$ for some $n \in \mathbb{Z}^+$, then p|a.

COROLLARY 28. Let $a \in \mathbb{Z}$. For every $n \in \mathbb{Z}^+$, $a^n \in \mathbb{E}$ if and only if $a \in \mathbb{E}$.

COROLLARY 29. Let p, q_1, q_2, \ldots, q_m be prime with $p|q_1q_2\cdots q_m$. Then there exists $i \in \mathbb{Z}$, $1 \le i \le m$, such that $p = q_i$.

EXAMPLE 30. Prove that $\sqrt[n]{5}$ is irrational for every integer $n \geq 2$.

Prime Factorization of a positive integer n greater than 1 is a decomposition of n into a product of primes.

Standard Form $n = p_1 p_2 \cdots p_k$, where primes p_1, p_2, \ldots, p_k satisfy $p_1 \leq p_2 \leq \ldots \leq p_k$

- **Compact Standard Form** $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}$, where primes p_1, p_2, \ldots, p_m satisfy $p_1 < p_2 < \ldots < p_m$ and $\alpha_1, \alpha_2, \ldots, \alpha_m \in \mathbb{Z}$.
- EXAMPLE 31. Write 1224 and 225 in a standard form (i.e. find prime factorization).

Strategy to use the Strong Principle of Mathematical Induction

Basic Step: Verify that P(1) is true.

Induction hypothesis: Assume that k is a positive integer for which $P(1), P(2), \ldots, P(k)$ are true.

Inductive Step: With the assumption made, prove that P(k+1) is true.

Conclusion: P(n) is true for every positive integer n.

THEOREM 32. Fundamental Theorem of Arithmetic. Let $n \in \mathbb{Z}$, n > 1. Then n is a prime number or can be written as a product of prime numbers. Moreover, the product is unique, except for the order in which the factors appears.

Proof.

Existence: Use the Strong Principle of Mathematical Induction.

P(n): Basic step: Induction hypothesis:

Inductive step:

Uniqueness Use the Strong Principle of Mathematical Induction. P(n):

Basic step:

Induction hypothesis:

Inductive step:

COROLLARY 33. There are infinitely many prime numbers.

Proof.

EXAMPLE 34. Prove that 2 is the only prime of the form $n^3 + 1$.

EXAMPLE 35. Prove that if a is a positive integer of the form 4n + 3, then at least one prime divisor of a is of the form 4n + 3.