12.5: Equations of lines and planes

Lines

Lines determined by a point and a vector

Consider line L that passes through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and is parallel to the nonzero vector $\mathbf{v}=\langle a, b, c\rangle$.

Vector equation	Parametric equations	Symmetric equations
$\mathbf{r}(t)=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle$,	$x=x_{0}+a t$,	If $a b c \neq 0$ then
	$y=y_{0}+b t$,	$\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$
$z=z_{0}+c t$,		
$-\infty<t<\infty$	$-\infty<t<\infty$	If, for example, $a=0$ then
		the symmetric equations have the form:
	$x=x_{0}, \frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$	

EXAMPLE 1. Complete the following.
(a) The equation $\mathbf{r}(t)=\langle 1,2,3\rangle+t\langle 4,5,6\rangle$ is a \qquad equation of the line passing through the point \qquad and parallel to the vector $\mathbf{v}=$ \qquad .
(b) The equation $\mathbf{r}(t)=\langle 1,2,3\rangle+t \mathbf{j}$ is a \qquad equation of the line passing through the point
\qquad and parallel to the \qquad -axis.
(c) The equations $x=2-t, y=-t, z=5$ are \qquad equations of the line passing through the point \qquad and parallel to the vector $\mathbf{v}=$ \qquad .
(d) The equations $\frac{x-4}{5}=y+1=\frac{z}{-3}$ are \qquad equations of the line passing through the point
\qquad and parallel to the vector $\mathbf{v}=$ \qquad -.
(e) The equations $\frac{x-4}{5}=y+1, z=2$ are \qquad equations of the line passing through the point
\qquad and parallel to the vector $\mathbf{v}=$ \qquad -

EXAMPLE 2. Find vector equation of the line passing through the point $(3,-4,1)$ and parallel to the vector $\mathbf{v}=\langle 7,0,-1\rangle$

Line segments

How to find parametric equation of a line segment:

1. Find parametric equation for the entire line;
2. restrict the parameter appropriately so that only the desired segment is generated.

EXAMPLE 3. Consider the line L that passes through the points $A(1,1,1)$ and $B(2,3,-2)$.
(a) Find parametric equations of L.
(b) Find point C at that the L intersects the $y z$-plane.
(c) Find parametric equations describing the line segment joining the points A and C.

EXAMPLE 4. Determine whether the lines

$$
L_{1}: \quad x-1=\frac{y+2}{3}=\frac{z-4}{-1}
$$

and

$$
L_{2}: \quad x=2 t, \quad y=3+t, \quad z=-3+4 t
$$

are parallel, skew, or intersecting.

Planes

Planes parallel to the coordinate planes:

Planes determined by a point and a normal vector
A plane in \mathbb{R}^{3} is uniquely determined by a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ in the plane and a vector $\mathbf{n}=(a, b, c)$ that is orthogonal to the plane. This vector is called a normal vector.

Assume that $P(x, y, z)$ is any point in the plane. Let \mathbf{r}_{0} and \mathbf{r} be the position vectors for P_{0} and P respectively.

Vector equation of the plane: $\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{\mathbf{0}}\right)=\mathbf{0} \quad \Leftrightarrow \quad \mathbf{n} \cdot \mathbf{r}=\mathbf{n} \cdot \mathbf{r}_{\mathbf{0}}$.

Scalar equation of plane:

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

Often this will be written as a linear equation in x, y, z,

$$
a x+b y+c z=d
$$

where $d=a x_{0}+b y_{0}+c z_{0}$.

EXAMPLE 5. Determine the equation of the plane through the point $(1,2,1)$ and orthogonal to vector $\langle 2,3,4\rangle$. Find the intercepts and sketch the plane.

EXAMPLE 6. Determine the equation of the plane through the points $A(1,1,1), B(0,1,0)$ and $C(1,2,3)$.

- Two planes are parallel if their normal vectors are parallel.
- Two planes are orthogonal if their normal vectors are orthogonal.
- If two planes are not parallel, then they intersect in a straight line and the angle between the two planes is defined as the acute angle between their normal vectors.

EXAMPLE 7. Given four planes:

$$
\begin{aligned}
& P_{1}: \quad 2 x+3 y+z+11=0 \\
& P_{2}: \quad-4 x-6 y-2 z+77=0 \\
& P_{3}: \quad 2 x-4 z+33=0 \\
& P_{4}: \quad-2 x+3 y+z+11=0 .
\end{aligned}
$$

(a) Find normal vectors corresponding to these planes.

$$
\begin{aligned}
\vec{n}_{1} & = \\
\vec{n}_{2} & = \\
\vec{n}_{3} & = \\
\vec{n}_{4} & =
\end{aligned}
$$

(b) Determine whether the given pairs of the planes are parallel, orthogonal, or neither. Find the angle between the planes.
(i) P_{1} and P_{2}
(ii) P_{1} and P_{3}
(iii) P_{1} and P_{4}

Line as an intersection of two non parallel planes:

$$
L:\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z+d_{1}=0 \\
a_{2} x+b_{2} y+c_{2} z+d_{2}=0
\end{array}\right.
$$

The direction vector of L is $\mathbf{a}=\mathbf{n}_{1} \times \mathbf{n}_{2}$.

EXAMPLE 8. Find an equation of the line given as intersection of two planes:

$$
\begin{aligned}
& x-y+3 z=0 \\
& x+y+4 z=2
\end{aligned}
$$

