12.5: Equations of lines and planes

Lines

Lines determined by a point and a vector

Consider line L that passes through the point $P_0(x_0, y_0, z_0)$ and is parallel to the nonzero vector $\mathbf{v} = \langle a, b, c \rangle$.

Vector equation	Parametric equations	Symmetric equations
		If $abc \neq 0$ then
	$x = x_0 + at,$	
$\mathbf{r}(t) = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle,$	$y = y_0 + bt,$	$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$
	$z = z_0 + ct,$	
$-\infty < t < \infty$	$-\infty < t < \infty$	If, for example, $a = 0$ then
		the symmetric equations have the form:
		$x = x_0, \frac{y - y_0}{b} = \frac{z - z_0}{c}$

EXAMPLE 1. Complete the following.

- (a) The equation $\mathbf{r}(t) = \langle 1, 2, 3 \rangle + t \langle 4, 5, 6 \rangle$ is a ______ equation of the line passing through the point _____ and parallel to the vector $\mathbf{v} =$ _____.
- (b) The equation $\mathbf{r}(t) = \langle 1, 2, 3 \rangle + t\mathbf{j}$ is a ______ equation of the line passing through the point ____ and parallel to the __-axis.
- (c) The equations x = 2 t, y = -t, z = 5 are ______ equations of the line passing through the point _____ and parallel to the vector $\mathbf{v} =$ _____.
- (d) The equations $\frac{x-4}{5} = y + 1 = \frac{z}{-3}$ are ______ equations of the line passing through the point _____ and parallel to the vector $\mathbf{v} = \underline{\qquad}$.
- (e) The equations $\frac{x-4}{5} = y+1, z=2$ are ______ equations of the line passing through the point _____ and parallel to the vector $\mathbf{v} =$ _____.

EXAMPLE 2. Find vector equation of the line passing through the point (3, -4, 1) and parallel to the vector $\mathbf{v} = \langle 7, 0, -1 \rangle$

Line segments

How to find parametric equation of a line segment:

- 1. Find parametric equation for the entire line;
- 2. restrict the parameter appropriately so that only the desired segment is generated.

EXAMPLE 3. Consider the line L that passes through the points A(1,1,1) and B(2,3,-2).

(a) Find parametric equations of L.

(b) Find point C at that the L intersects the yz-plane.

(c) Find parametric equations describing the line segment joining the points A and C.

EXAMPLE 4. Determine whether the lines

$$L_1: x-1=\frac{y+2}{3}=\frac{z-4}{-1}$$

and

$$L_2: \quad x = 2t, \quad y = 3+t, \quad z = -3+4t$$

are parallel, skew, or intersecting.

Planes

Planes parallel to the coordinate planes:

Planes determined by a point and a normal vector

A plane in \mathbb{R}^3 is uniquely determined by a point $P_0(x_0, y_0, z_0)$ in the plane and a vector $\mathbf{n} = (a, b, c)$ that is orthogonal to the plane. This vector is called a **normal vector**.

Assume that P(x, y, z) is any point in the plane. Let \mathbf{r}_0 and \mathbf{r} be the position vectors for P_0 and P respectively.

 $\label{eq:vector equation of the plane:} \quad \mathbf{n} \cdot (\mathbf{r} - \mathbf{r_0}) = \mathbf{0} \qquad \Leftrightarrow \qquad \mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r_0}.$

Scalar equation of plane:

$$a(x-x_0) + b(y-y_0) + c(z-z_0) = 0.$$

Often this will be written as a **linear equation** in x, y, z,

$$ax + by + cz = d$$

where $d = ax_0 + by_0 + cz_0$.

- Two planes are **parallel** if their normal vectors are parallel.
- Two planes are **orthogonal** if their normal vectors are orthogonal.
- If two planes are not parallel, then they intersect in a straight line and the **angle** between the two planes is defined as the *acute* angle between their normal vectors.

EXAMPLE 7. Given four planes:

$$P_1:$$
 $2x + 3y + z + 11 = 0$
 $P_2:$ $-4x - 6y - 2z + 77 = 0$
 $P_3:$ $2x - 4z + 33 = 0$
 $P_4:$ $-2x + 3y + z + 11 = 0$.

(a) Find normal vectors corresponding to these planes.

$$\vec{n}_1 = \vec{n}_2 = \vec{n}_3 = \vec{n}_4 = \vec{n}_4 = \vec{n}_4$$

- (b) Determine whether the given pairs of the planes are parallel, orthogonal, or neither. Find the angle between the planes.
 - (i) P_1 and P_2

(ii) P_1 and P_3

(iii) P_1 and P_4

Line as an intersection of two non parallel planes:

The direction vector of L is $\mathbf{a} = \mathbf{n}_1 \times \mathbf{n}_2$.

EXAMPLE 8. Find an equation of the line given as intersection of two planes: