14.6: Directional Derivatives and the Gradient Vector

Recall that the two partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ of $f(x, y)$ represent the rate of change of f as we vary x (holding y fixed) and as we vary y (holding x fixed) respectively. In other words, $f_{x}(x, y)$ and $f_{y}(x, y)$ represent the rate of change of f in the directions of the unit vectors \mathbf{i} and \mathbf{j} respectively. Let's consider how to find the rate of change of f if we allow both x and y to change simultaneously, or how to find the rate of change of f in the direction of an arbitrary vector \mathbf{u}.

DEFINITION 1. The rate of change of $f(x, y)$ in the direction of the unit vector $\hat{\mathbf{u}}=\langle a, b\rangle$ is called the directional derivative and it is denoted by $D_{\mathbf{u}} f(x, y)$.

The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of the unit vector $\hat{\mathbf{u}}=\langle a, b\rangle$ is

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

if this limit exists.
REMARK 2. By comparing the last definition with the definitions of the partial derivatives:

$$
f_{x}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}, \quad f_{y}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

we see that

$$
f_{x}\left(x_{0}, y_{0}\right)=\quad \text { and } \quad f_{y}\left(x_{0}, y_{0}\right)=
$$

For computational purposes use the following theorem.
THEOREM 3. If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\hat{\mathbf{u}}=\langle a, b\rangle$ and

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b
$$

EXAMPLE 4. Find the rate of change $f(x, y)=x^{3}+\sin (x y)$ at the point $(1, \pi / 2)$ in the direction indicated by the angle $\theta=\pi / 4$.

The Directional Derivative As The Dot Product Of Two Vectors. Gradient.
DEFINITION 5. The gradient of $f(x, y)$ is the vector function ∇f defined by

$$
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

Notations for gradient: $\operatorname{grad} f$ or ∇f which is read "del f ".
EXAMPLE 6. Find the gradient of $f=\cos (x y)+e^{x}$ at $(0,3)$.

By Theorem 3 we have:

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b=
$$

Formula for the directional derivative using the gradient vector:

$$
D_{\mathbf{u}} f(x, y)=\nabla f(x, y) \cdot \hat{\mathbf{u}} .
$$

EXAMPLE 7. Find the directional derivative for f from Example 6 at $(0,3)$ in the direction $\langle 3,4\rangle$.

The directional derivative of function of three variables

THEOREM 8. If f is a differentiable function of x, y and z, then f has a directional derivative in the direction of any unit vector $\hat{\mathbf{u}}=\langle a, b, c\rangle$ and

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y, z) a+f_{y}(x, y, z) b+f_{z}(x, y, z) c=\nabla f \cdot \hat{\mathbf{u}}
$$

where

$$
\nabla f(x, y, z)=\left\langle f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right\rangle=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

is the gradient vector of $f(x, y, z)$.

EXAMPLE 9. Find the directional derivative of $f(x, y, z)=z^{3}-x^{2} y$ at the point $(1,6,2)$ in the direction $\mathbf{u}=\langle 1,-2,3\rangle$.

QUESTION: In which of all possible directions does f change fastest and what is the maximum rate of change.

ANSWER is provided by the following theorem:
THEOREM 10. Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\mathbf{u}} f$ is $|\nabla f|$ and it occurs when \mathbf{u} has the same direction as the gradient vector ∇f.

Proof.

EXAMPLE 11. Suppose that the temperature at a point (x, y, z) in the space is given by

$$
T(x, y, z)=\frac{100}{1+x^{2}+y^{2}+z^{2}}
$$

where T is measured in ${ }^{\circ} C$ and x, y, z in meters.
(a) In which direction does the temperature increase fastest at the point $(1,1,-1)$?
(b) What is the maximum rate of increase?

Tangent planes to level surfaces:

FACT: The gradient vector $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is orthogonal to the level surface $F(x, y, z)=k$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$.

So, the tangent plane to the surface $f(x, y, z)=k$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$ has the equation:

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0 .
$$

The normal line to the surface at the point $\left(x_{0}, y_{0}, z_{0}\right)$ is the line passing through $\left(x_{0}, y_{0}, z_{0}\right)$ and perpendicular to the tangent plane. Therefore its direction is given by the \qquad vector

EXAMPLE 12. Find the equation of the tangent plane and normal line at the point $(1,0,5)$ to the surface $x e^{y z}=1$.

Likewise, the gradient vector $\nabla f\left(x_{0}, y_{0}\right)$ is orthogonal to the level curve $f(x, y)=k$ at the point $\left(x_{0}, y_{0}\right)$.

Consider a topographical map of a hill and let $f(x, y)$ represent the height above sea level at a point with coordinates (x, y). Draw a curve of steepest ascent.

